Volume 65 | Issue 8 | Year 2019 | Article Id. IJMTT-V65I8P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I8P506
Ilija Barukčić, "Classical logic and the division by zero," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 8, pp. 31-73, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I8P506
[1] Barukčić I. Theoriae causalitatis principia mathematica. Norderstedt: Books on Demand; 2017.
[2] Barukčić I. Anti Bohr — Quantum Theory and Causality. Int J Appl Phys Math. 2017;7:93–111.
[3] Bombelli R. L‘ algebra : opera di Rafael Bombelli da Bologna, divisa in tre libri : con la quale ciascuno da se potrà venire in perfetta cognitione della teorica dell‘Aritmetica : con una tavola copiosa delle materie, che in essa si contengono. Bolgna (Italy): per Giovanni Rossi; 1579. http://www.e-rara.ch/doi/10.3931/e-rara-3918. Accessed 14 Feb 2019.
[4] Recorde R. The Whetstone of Witte, whiche is the seconde parte of Arithmetike: containing the extraction of rootes: The cossike practise, with the rule of Equation: and the workes of Surde Nombers. Robert Recorde, The Whetstone of Witte London, England: John Kyngstone, 1557. London (England): John Kyngstone; 1557. http://archive.org/details/TheWhetstoneOfWitte. Accessed 16 Feb 2019.
[5] Rolle M [1652-1719]. Traité d‘algèbre ou principes généraux pour résoudre les questions... Paris (France): chez Estienne Michallet; 1690. https://www.e-rara.ch/doi/10.3931/e-rara-16898. Accessed 16 Feb 2019.
[6] Widmann J. Behende und hüpsche Rechenung auff allen Kauffmanschafft. Leipzig (Holy Roman Empire): Conrad Kachelofen; 1489. http://hdl.loc.gov/loc.rbc/Rosenwald.0143.1
[7] Pacioli L. Summa de arithmetica, geometria, proportioni et proportionalità. Venice; 1494. http://doi.org/10.3931/e-rara-9150. Accessed 16 Feb 2019.
[8] Deutsch D. Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proc R Soc Math Phys Eng Sci. 1985;400:97–117. doi:10.1098/rspa.1985.0070.
[9] Schumacher B. Quantum coding. Phys Rev A. 1995;51:2738–47. doi:10.1103/PhysRevA.51.2738.
[10] Newstadt R. Omnis Determinatio est Negatio: A Genealogy and Defense of the Hegelian Conception of Negation. Dissertation. Chicago (IL): Loyola University Chicago; 2015. http://ecommons.luc.edu/luc_diss/1481.
[11] Horn LR. A Natural History of Negation. 2nd ed. Stanford, Calif: Centre for the Study of Language & Information; 2001
[12] Förster E, Melamed YY, editors. Spinoza and German idealism. Cambridge [England] ; New York: Cambridge University Press; 2012.
[13] Spinoza BD. Opera quae supersunt omnia / iterum edenda curavit, praefationes, vitam auctoris, nec non notitias, quae ad historiam scriptorum pertinent. Heinrich Eberhard Gottlob Paulus. Ienae: In Bibliopolio Academico: In Bibliopolio Academico; 1802. http://www.e-rara.ch/doi/10.3931/e-rara-14505. Accessed 28 Feb 2019.
[14] Hegel GWF. Hegel‘s Science of Logic (Wissenschaft der Logik). Later Printing edition. Amherst, N.Y: Humantiy Books; 1812.
[15] Boole G. An investigation of the laws of thought, on which are founded the mathematical theories of logic and probabilities. London (GB): Walton and Maberly; 1854. http://archive.org/details/investigationofl00boolrich. Accessed 12 Feb 2019.
[16] Bettinger AK, Englund JA. Algebra And Trigonometry. International Textbook Company.; 1960. http://archive.org/details/algebraandtrigon033520mbp. Accessed 31 Jul 2019.
[17] Euclid, Taylor HM. Euclids elements of geometry. Cambridge [Cambridgeshire] : at the University Press; 1893. http://archive.org/details/tayloreuclid00euclrich. Accessed 30 Jul 2019
[18] Barukčić I. Unified Field Theory. J Appl Math Phys. 2016;04:1379–438.
[19] Barukčić I. The Relativistic Wave Equation. Int J Appl Phys Math. 2013;3:387–91
[20] Brush SG, Lorentz HA, FitzGerald GF. Note on the History of the FitzGerald-Lorentz Contraction. Isis. 1967;58:230–2. doi:10.1086/350224.
[21] Abramowitz M, Stegun IA, editors. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. 9. Dover print.; [Nachdr. der Ausg. von 1972]. New York, NY: Dover Publ; 2013.
[22] Born M. Zur Quantenmechanik der Stoßvorgänge. Z Für Phys. 1926;37:863–7. doi:10.1007/BF01397477.
[23] Poincaré H. La théorie de Lorentz et le principe de réaction. Arch Néerl Sci Exactes Nat. 1900;5:252–278. http://www.physicsinsights.org/poincare-1900.pdf.
[24] Einstein A. Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Ann Phys. 1905;323:639–41. doi:10.1002/andp.19053231314.
[25] L‘Hôpital GFAD. Analyse Des Infiniment Petits, Pour l‘intelligence des lignes courbes (English translation: Analysis of the Infinitely Small for the Understanding of Curved Lines). Paris (France): De L‘Imprimerie Royale; 1696. doi:10.3931/e-rara-10415.
[26] Lettenmeyer F. Über die sogenannte Hospitalsche Regel. J Für Reine Angew Math Crelles J. 1936;1936:246–247. doi:10.1515/crll.1936.174.246.
[27] Wazewski T. Une demonstration uniforme du théorème généralisé de l‘Hospital. Ann Soc Pol Math. 1949;22:161–8.
[28] Taylor AE. L‘Hospital‘s Rule. Am Math Mon. 1952;59:20. doi:10.2307/2307183.
[29] Boas RP. Counterexamples to L‘hôpital‘s Rule. Am Math Mon. 1986;93:644–5. doi:10.1080/00029890.1986.11971912.
[30] Barukčić JP, Barukčić I. Anti Aristotle—The Division of Zero by Zero. J Appl Math Phys. 2016;04:749–61.
[31] Maor E. The Pythagorean Theorem: A 4,000-Year History. Reprint edition. Princeton University Press; 2010. https://press.princeton.edu/titles/9309.html.
[32] Euclid, Heath TL, Heiberg JL (Johan L. The thirteen books of Euclid‘s Elements. Cambridge, The University Press; 1908. http://archive.org/details/thirteenbookseu03heibgoog. Accessed 16 Mar 2019
[33] Leibniz GW, Gerhardt CI. Historia et origo Calculi Differentialis. Hannover: Hahn; 1846. http://archive.org/details/historiaetorigo00gerhgoog.
[34] Boyer CB, Merzbach UC. A history of mathematics. 2. ed. New York: Wiley; 1991.
[35] Needham J, Wang! L, Needham J. Mathematics and the sciences of the heavens and the earth. Cambridge: Cambridge Univ. Press; 2005
[36] Selin H, editor. Mathematics across cultures: the history of non-Western mathematics. Dordrecht: Kluwer; 2000.
[37] Kellner MM. R. Levi Ben Gerson: A Bibliographical Essay. Stud Bibliogr Booklore. 1979;12:13–23. https://www.jstor.org/stable/27943474. Accessed 29 Jul 2019.
[38] Langermann YT, Simonson S. The Hebrew Mathematical Tradition. In: Selin H, editor. Mathematics Across Cultures. Dordrecht: Springer Netherlands; 2000. p. 167–88. doi:10.1007/978-94-011-4301-1_10.
[39] Bürgi J. Aritmetische vnd Geometrische Progress Tabulen, sambt gründlichem vnterricht, wie solche nützlich in allerley Rechnungen zugebrauchen, vnd verstanden werden sol. Prag: Universitet Buchdruckern; 1620. https://bildsuche.digitale-sammlungen.de/index.html?c=viewer&lv=1& bandnummer=bsb00082065& pimage=00001& suchbegriff=& l=de.
[40] Briggs H. Trigonometria Britannica, sive De doctrina triangulorum libri duo : quorum prior continet constructionem canonis sinuum, tangentium & secantium, unà cum logarithmis sinuum & tangentium ad gradus & graduum centesimas & ad minuta & secunda centesimis respondentia / posterior verò usum sive applicationem canonis in resolutione triangulorum tam planorum quam sphaericorum e geometricis fundamentis petitâ, calculo facillimo, eximiisque compendiis exhibet. excudebat Petrus Rammasenius; 1633. doi:10.3931/e-rara-9466.
[41] Newton I. Analysis per quantitatum series, fluxiones, ac differentias: cum enumeratione linearum tertii ordinis. ex officina Pearsoniana; 1711. doi:10.3931/e-rara-8934.
[42] Cotes R. Harmonia mensurarum, sive analysis et synthesis per rationum et angulorum mensuras promotae : accedunt alia opuscula mathematica. [s.n.]; 1722. doi:10.3931/e-rara-4027.
[43] Stirling J. Methodus differentialis: sive tractatus de summatione et interpolatione serierum infinitarum. Typis Gul. Bowyer : Impensis G. Strahan; 1730. doi:10.3931/e-rara-68088.
[44] Euler L. Introductio in analysin infinitorum. apud Marcum-MIchaelem Bousquet & socios; 1748. doi:10.3931/e-rara-8740.
[45] Newton I. De Analysi per aequationes numero terminorum infinitas. London (England); 1669. doi:10.3931/e-rara-8934.
[46] Popper K. Conjectures and Refutations: The Growth of Scientific Knowledge. Überarb. A. London ; New York: Routledge; 2002.
[47] Nicomachus of Gerasa (Syria ca. 60 – ca. 120 AD). Introduction to Arithmetic. Translated into English by Mathin Luther D‘Ooge. New York: The Macmillan Company; 1926. https://ia600701.us.archive.org/15/items/NicomachusIntroToArithmetic/nicomachus_introduction_arithmetic.pdf.
[48] Barukčić I. Zero Divided by Zero Equals One. J Appl Math Phys. 2018;06:836–53.
[49] Euler L. Vollständige Anleitung zur Algebra. St. Petersburg: Bei der kayserlichen Akademie der Wissenschaften; 1771. https://www.e-rara.ch/doi/10.3931/e-rara-9093. Accessed 16 Jan 2019.
[50] Wallis J. Arithmetica infinitorvm, sive nova methodus inquirendi in curvilineorum quadraturam, aliaq; difficiliora matheseos problemata. Oxonii [i.e. Oxford]: typis Leon. Lichfield ; impensis Tho. Robinson; 1656. http://dx.doi.org/10.3931/e-rara-38681.
[51] Newton I. Opuscula mathematica, philosophica et philologica. Collegit partimque latine vertit ac recensuit Joh. Castillioneus. 1744. http://www.e-rara.ch/doi/10.3931/e-rara-8608. Accessed 16 Jan 2019.
[52] Barukčić I. The Geometrization of the Electromagnetic Field. J Appl Math Phys. 2016;04:2135–71.
[53] Nepero I < Barone M. Mirifici Logarithmorum Canonis descriptio, Ejusque usus, in utraque Trigonometria; ut etiam in omni Logistica Mathematica, Amplissimi, facillimi, & expeditissimi explicatio. Edinburgi: Ex officinâ Andreae Hart; 1614. https://www.loc.gov/item/04005707/. Accessed 28 Jul 2019.
[54] Diophantus. Diophantus geometra sive opus contextum ex arithmetica et geometria simul : in quo quaestiones omnes Diophanti, quae geometrice solvi possunt, enodantur tum algebricis, tum geometricis rationibus : adiectus est Diophantus geometra pro motus ... apud Michaelem Soly; 1660. doi:10.3931/e-rara-27747.
[55] Crowley ML, Dunn KA. On Multiplying Negative Numbers. Math Teach. 1985;78:252–6. https://www.jstor.org/stable/27964483. Accessed 28 Jul 2019.
[56] Cardano G. Artis magnae, sive de regulis algebraicis, liber unus. Qui & totius operis de arithmetica, quod opus perfectum inscripsit, est in ordine decimus. Nürnberg (Holy Roman Empire): Petreius; 1545. doi:10.3931/e-rara-9159.
[57] Barukčić I. The Interior Logic of Inequalities. Int J Math Trends Technol IJMTT. 2019;65:146–55.doi:10.14445/22315373/IJMTT-V65I7P524.
[58] Paolilli AL. Division by Zero: a Note. Int J Innov Sci Math. 2017;5:199–200. https://www.ijism.org/index.php?option=com_jresearch&view=publication&task=show&id=266&Itemid=171. Accessed 31 Jan 2019.
[59] Ufuoma O. On the Operation of Division by Zero in Bhaskara‘s Framework: Survey, Criticisms, Modifications and Justifications. Asian Res J Math. 2017;6:1–20. doi:10.9734/ARJOM/2017/36240.
[60] Barukčić JP, Barukčić I. Anti Aristotle—The Division of Zero by Zero. J Appl Math Phys. 2016;04:749–61. doi:10.4236/jamp.2016.44085.
[61] Patrick Mwangi W. Mathematics Journal: Division of Zero by Itself - Division of Zero by Itself Has Unique Solution. Pure Appl Math J. 2018;7:20. doi:10.11648/j.pamj.20180703.11.
[62] Czajko J. On Unconventional Division by Zero. World Sci News. 2018;99:133–47. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.psjd-3a9d46ab-dfd0-41cd-84b5-bf7527e63d43. Accessed 9 Jun 2019.
[63] Czajko J. On Cantorian spacetime over number systems with division by zero. Chaos Solitons Fractals. 2004;21:261–71. doi:10.1016/j.chaos.2003.12.046.
[64] Ufuoma O. Exact Arithmetic of Zero and Infinity Based on the Conventional Division by Zero 0/0 = 1. Asian Res J Math. 2019;:1–40. doi:10.9734/arjom/2019/v13i130099.
[65] Anderson JADW, Völker N, Adams AA. Perspex Machine VIII: axioms of transreal arithmetic. In: Latecki LJ, Mount DM, Wu AY, editors. San Jose, CA, USA; 2007. p. 649902. doi:10.1117/12.698153.
[66] Bergstra JA, Hirshfeld Y, Tucker JV. Meadows and the equational specification of division. Theor Comput Sci. 2009;410:1261–71. doi:10.1016/j.tcs.2008.12.015.
[67] Bergstra JA, Ponse A. Division by Zero in Common Meadows. In: De Nicola R, Hennicker R, editors. Software, Services, and Systems. Cham: Springer International Publishing; 2015. p. 46–61. doi:10.1007/978-3-319-15545-6_6.
[68] Matsuura T, Saitoh S. Matrices and Division by Zero z/0 = 0. Adv Linear Algebra Amp Matrix Theory. 2016;06:51–8. doi:10.4236/alamt.2016.62007.
[69] Michiwaki H, Saitoh S, Yamada M. Reality of the Division by Zero z/0 = 0. Int J Appl Phys Math. 2016;6:1–8. doi:10.17706/ijapm.2016.6.1.1-8.
[70] da Costa NCA. On the theory of inconsistent formal systems. Notre Dame J Form Log. 1974;15:497–510. doi:10.1305/ndjfl/1093891487
[71] Quesada FM, editor. Heterodox logics and the problem of the unity of logic. In: Non-Classical Logics, Model Theory, and Computability: Proceedings of the Third Latin-American symposium on Mathematical Logic, Campinas, Brazil, July 11-17, 1976. Arruda, A. I., Costa, N. C. A. da, Chuaqui, R. (Eds.). Amsterdam ; New York : New York: North-Holland; 1977.
[72] Barukčić I. Aristotle‘s law of contradiction and Einstein‘s special theory of relativity. J Drug Deliv Ther. 2019;9:125–43. doi:10.22270/jddt.v9i2.2389.