Volume 66 | Issue 11 | Year 2020 | Article Id. IJMTT-V66I11P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I11P509
R. Nelson proved that fo a given copula C and two increasing functions Ø and V, the mapping(u,v)->C(Ø(u),V(v)) remains a copula. Here the coverse is discussed and partially proved. In other words, we prove that copula property is preserved uniquely under increasing transformations.
[1] Patrizia Berti, Luca Pratelli, and Pietro Rigo. A survey on skorokhod representation theorem without separability. Theory of Stochastic Processes, 20(2):1-2, 2015.
[2] Jian Lian Cui. Nonlinear preserver problems on b (h). Acta Mathematica Sinica, English Series, 27(1):193-202, 2011.
[3] Georg Frobenius. Uber die Darstellung der endlichen Gruppen durch lineare Substitutionen. II.:... Reimer, 1899.
[4] Shou Chuan Hu. Fixed points for discontinuous quasi-monotone maps in . Proceedings of the American Mathematical Society, 104(4):1111-1114, 1988.
[5] Ali A Jafarian and AR Sourour. Spectrum-preserving linear maps. Journal of functional analysis, 66(2):255-261, 1986.
[6] Charles R Johnson, Chi-Kwong Li, Leiba Rodman, Ilya Spitkovsky, and Stephen Pierce. Linear maps preserving regional eigenvalue location. Linear and Multilinear Algebra, 32(3-4):253-264, 1992.
[7] Irving Kaplansky. Algebraic and analytic aspects of operator algebras, volume 1. American Mathematical Soc., 1970.
[8] Chi-Kwong Li and Nam-Kiu Tsing. Linear preserver problems: A brief introduction and some special techniques. Linear Algebra Appl, 162(164):217-235, 1992.
[9] Mostafa Mbekhta. Linear maps preserving the set of fredholm operators. Proceedings of the American Mathematical Society, 135(11):3613-3619, 2007.
[10] Mostafa Mbekhta, Vladimir Muller, and Mourad Oudghiri. Additive preservers of the ascent, descent and related subsets. Journal of Operator Theory, pages 63{83, 2014.
[11] Roger B Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.
[12] Ahmed Sani and Loubna Karbil. Functional treatment of asymmetric copulas. arXiv preprint arXiv:1907.05915, 2019.
[13] M Sklar. Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ. Paris, 8:229-231, 1959.
L. KARBIL, A. SANI, I. DAOUDI, "COPULAS AND PRESERVER PROBLEMS," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 11, pp. 105-116, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I11P509