Volume 66 | Issue 12 | Year 2020 | Article Id. IJMTT-V66I12P503 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I12P503
Dhruv Sharma, "An Integrated Approach of The Brachistochrone And Tautocrone Curve," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 12, pp. 17-22, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I12P503
[1] G. Korn, T. Korn, Mathematical Handbook, McGraw-Hill, New York 1968.
[2] Charles Fox, An introduction to the calculus of variations.
[3] Cornelius Lanczos, The variational principles of mechanics.
[4] Terra, Pedro & Souza, Reinaldo & Farina de Souza, Carlos. (2016). Is the tautochrone curve unique? American Journal of Physics. 84. 10.1119/1.4963770. https://www.researchgate.net/publication/308883905_Is_the_tautochrone_curve_unique
[5] Parnowski, Aleksei. (1998). Some generalisations of brachistochrone problem. 93. S-55. https://www.researchgate.net/publication/298004003_Some_generalisations_of_brachistochrone_problem
[6] Nishiyama, Yutaka. (2013). The brachistochrone curve: The problem of quickest descent. International Journal of Pure and Applied Mathematics. 82. 409-419.
[7] Gómez, Raúl & Marquina, Vivianne & Gómez-Aíza, S. (2008). An alternative solution to the general tautochrone problem. Revista mexicana de física E. 54. https://www.researchgate.net/publication/237694649_An_alternative_solution_to_the_general_tautochrone_problem
[8] Terra, Pedro & Souza, Reinaldo & Farina de Souza, Carlos. (2016). Is the tautochrone curve unique? American Journal of Physics. 84. 10.1119/1.4963770. https://www.researchgate.net/publication/308883905_Is_the_tautochrone_curve_unique
[9] Aleksandra Risteska, Application of Fundamental Lemma of Variational Calculus to the Problem for the Brachistochrone, International Journal of Mathematics Trends and Technology (IJMTT). V57(5):296-302 May 2018. ISSN:2231-5373. www.ijmttjournal.org. Published by Seventh Sense Research Group.