Volume 66 | Issue 1 | Year 2020 | Article Id. IJMTT-V66I1P520 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I1P520
Vidhi Bhardwaj, Dr. Jayprakash Yadav, "Some Certain Summation Formula of q- Series and q–Continued Fractions," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 1, pp. 165-168, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I1P520
[1] Bailey, W. N. "Some Identities Involving Generalized Hypergeometric Series." Proc. London Math. Soc. 29, 503-516, 1929.
[2] Bailey, W. N. Generalized Hypergeometric Series. Cambridge, England: University Press, 1935.
[3] Bhatnagar, G. Inverse Relations, Generalized Bibasic Series, and their U(n) Extensions. Ph.D. thesis. Ohio State University, 1995. http://www.math.ohio-state.edu/~milne/papers/Gaurav.whole.thesis.7.4.ps.
[4] Milne, S. C. and Lilly, G. M. "The Ai and Ci Bailey Transform and Lemma." Bull. Amer. Math. Soc. 26, 258-263, 1992.
[5] An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Natl. Acad. Sci. USA 71 (1974), 4082–4085.
[6] Problems and prospects for basic hypergeometric functions, Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) (R. Askey, ed.), Math. Res. Center, Univ. Wisconsin, Publ. no. 35, Academic Press, New York, 1975, pp. 191–224.
[7] The theory of partitions, Encyclopedia of Mathematics and Its Applications, vol. 2, Addison-Wesley Publishing, Massachusetts, 1976.
[8] Partitions and Durfee dissection, Amer. J. Math. 101 (1979), no. 3, 735–742.
[9] The hard-hexagon model and Rogers-Ramanujan type identities, Proc. Natl. Acad. Sci. USA 78 (1981), no. 9, part 1, 5290–5292.
[10] Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984), no. 2, 267–283.