Volume 66 | Issue 6 | Year 2020 | Article Id. IJMTT-V66I6P510 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I6P510
Akintunde Oyetunde A, "Mathematical Modeling And Probability Distribution Function Analyses of Quarantine Control Strategies For Covid-19," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 6, pp. 94-104, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I6P510
[1] Akinwande, N. I. (2005): A mathematical model of the chaotic dynamics of the AIDS disease pandemic. Journal of the Nigeria
Mathematical Society, 24, 8-17.
[2] Brauer, F. and Castillo-Chavez, C. (2001): Mathematical models in population biology and epidemiology. New York: Springer-Verlag.
[3] Bolarin, G. and Adeoye, K. R. (2011): On the use of delay differential equation in modeling the rate of HIV/AIDS infection in Nigeria.
The Journal of Mathematical Association of Nigeria (Abacus), 38(2), 76-86.
[4] Enagi, A. I. (2011): Modeling the effect of Antiretroviral Therapy and Latent TB Treatment in controlling the spread of TB in Nigeria.
Current Research in TB, 3: 9-15
[5] Abdulrahman, S. (2009): A mathematical model of HIV and immune system. Journal of Sciences, Technology and Mathematics
Education, 6(2), 166-171.
[6] Bolarin, G. and Omatola, I. U. (2016): A Mathematical Analysis of HIV/TB Co-Infection Model, Applied Mathematics, 6(4), 65-72
[7] Kotler P. and Lee N. R. (2008): Social Marketing: influencing behaviors for good. 3. Thousand Oaks, CA: Sage; 2008
[8] Rankish H. (2003): Death toll continues to climb in Congo Ebola outbreak, Lancet 361: 1020.
[9] Daszak P., Cunningham A.A., Hyatt A.D. (2000): Emerging infectious diseases of wildlife—Threats to biodiversity and human health.
Science 287: 443–449.
[10] Donnelly C.A., Ghani A.C., Leung G.M., Hedley A.J., Fraser C., et al. (2003): Epidemiological determinants of spread of causal agent of
Severe acute respiratory syndrome in Hong Kong. Lancet 361: 1761–1766.
[11] Gani R., Leach S. (2001): Transmission potential of smallpox in contemporary populations. Nature 414: 748–751.
[12] Halloran M.E., Longini I., Nizam A., Yang Y. (2002): Containing bioterrorist smallpox. Science 298: 1428–1432.
[13] Keeling M.J., Gilligan C.A. (2000): Bubonic plague: A metapopulation model of a zoonosis. Procedure of Royal Society, London,
Biological Science, 267: 2219–2230.
[14] Anderson R.M., Donnelly C.A., Ferguson N.M., Woolhouse M.E.J., Watt C.J., et al. (1996): Transmission dynamics and epidemiology
of BSE in British cattle. Nature 382: 779–788.
[15] Woolhouse M., Chase-Topping M., Haydon D., Friar J., Matthews L., et al. (2001): Foot-and-mouth disease under control in the UK.
Nature 411: 258–259.
[16] Cyranoski D. (2001): Outbreak of chicken flu rattles Hong Kong. Nature 412: 261.
[17] Miller M.W., Wild M.A. (2004): Epidemiology of chronic wasting disease in captive white-tailed and mule deer. J Wildl Dis 40: 320–
327.
[18] Ogbu O., Ajuluchukwu E. and Uneke C.J. (2007): Lassa fever in West Africa sub-region. Overview Journal Vector Borne Disease, 44: 1-
11.
[19] Heesterbeek J.A.P. (2002): A brief history of R0 and a recipe for its calculation. Acta Biotheor 50: 189–204.
[20] Keeling M.J., Woolhouse M.E.J., Shaw D.J., Matthews L., Chase-Topping M., et al. (2001): Dynamics of the 2001 UK foot and mouth
epidemic: Stochastic dispersal in a heterogeneous landscape. Science 294: 813–817.
[21] Lipsitch M., Cohen T., Cooper B., Robins J.M., Ma S., et al. (2003): Transmission dynamics and control of severe acute respiratory
syndrome. Science 300: 1966–1970.
[22] Ferguson N.M., Keeling M.J., Edmunds W.J., Gant R., Grenfell B.T., et al. (2003): Planning for smallpox outbreaks. Nature 425: 681–
685.
[23] Fraser C., Riley S., Anderson R.M., Ferguson N.M. (2004): Factors that make an infectious disease outbreak controllable. Proc Natl
Acad Sci U S A 101: 6146–6151.
[24] Camacho A, Kucharski A, Aki-Sawyerr Y, et al. (2015): Temporal changes in Ebola transmission in Sierra Leone and implications for
control requirements: a real-time modeling study. PLoS Curr 2015; 7.
[25] Funk S, Ciglenecki I, Tiffany A, et al. (2017): The impact of control strategies and behavioural changes on the elimination of Ebola from
Lofa County, Liberia. Philos Trans R Soc Lond B Biol Sci 2017; 372: 20160302.
[26] Riley S, Fraser C, Donnelly CA, et al. (2003): Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public
health interventions. Science 2003; 300: 1961–66.
[27] Aylward B., Barboza P., Bawo L., et al. (2014): Ebola virus disease in West Africa—the first 9 months of the epidemic and forward
projections. N Engl J Med 2014; 371: 1481–95.
[28] Nishiura H., Klinkenberg D., Roberts M., Heesterbeek J.A.P. (2009): Early epidemiological assessment of the virulence of emerging
infectious diseases: a case study of an influenza pandemic. PLoS One 2009; 4: e6852.
[29] WHO. Coronavirus disease 2019 (COVID-19). Situation report 24. Geneva: World Health Organization, 2020.
[30] nCoV-2019 Data Working Group. Epidemiological data from the nCoV-2019 outbreak: early descriptions from publicly available data.
2020. http://virological.org/t/epidemiological-data-from-the-ncov-2019-outbreak-early-descriptions-from-publicly-available-data/337