Volume 66 | Issue 7 | Year 2020 | Article Id. IJMTT-V66I7P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I7P508
We determine an improved negative binomial distribution with parameters n ε ¥ and 0 < p < 1 from a negative Polya distribution with parameters N, n and r, where P = n-r-1/N-1. Following improved negative binomial and negative binomial approximations to the negative Polya distribution, the improved negative binomial approximation is more accurate than the negative binomial approximation.
[1] R. B. Chapman and M. S. Plesset, “Thermal effects in the free oscillations of gas bubbles,” Trans. ASME, Ser. D, 93 No. 3, p.373, 1971.
[2] R. I. Nigmatulin, Dynamics of Multiphase Media, Vols. 1 and 2, Hemisphere, New York, 1991.
[3] R. I. Nigmatulin, N. S. Khabeev, and F. B. Nagiev, “Dynamics heat and mass transfer of gas vapor bubbles in liquids,“ Int. J. Heat Mass Transfer, 24, No. 6, pp.1033-1044, 1981.
[4] J. H. Mathews and R. W. Howell, Complex Analysis for Mathematics and Engineering, Jones and Bartlett, London, 2006.
Kanint Teerapabolarn, "Improved Negative Binomial Approximation to Negative PÓlya Distribution," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 7, pp. 69-72, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I7P508