Volume 66 | Issue 7 | Year 2020 | Article Id. IJMTT-V66I7P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I7P511
Sachin Shinde, "Innovative method to find primes of given semi-primes," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 7, pp. 84-88, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I7P511
[1] Stewart, Ian, Professor Stewart's Cabinet of Mathematical Curiosities
[2] Ishmukhametov, Shamil & Sharifullina, (2014). On distribution of semiprime numbers. Russian Mathematics. 58. 43-48. 10.3103/S1066369X14080052.
[3] du Sautoy, Marcus (2011). "What are the odds that your telephone number is prime?" The Number Mysteries: A Mathematical Odyssey through Everyday Life
[4] Dudley 1978, Section 2, Lemma 5, p. 15; Higgins, Peter M. (1998). Mathematics for the Curious. Oxford University Press. pp. 77–78. ISBN 978-0-19-150050-3
[5] Caldwell, Chris K. "The Top Twenty: Factorial". The Prime Pages. Retrieved 2017-01-03
[6] Riesel, Hans (1994). Prime Numbers and Computer Methods for Factorization (2nd ed.). Basel, Switzerland: Birkhäuser. p. 36. doi:10.1007/978-1-4612-0251-6. ISBN 978-0-8176-3743-9. MR 1292250.
[7] Caldwell, Chris K.; Xiong, Yeng (2012). "What is the smallest prime?" (PDF). Journal of Integer Sequences. 15 (9): Article 12.9.7. MR 3005530.
[8] Weisstein, Eric W. Semiprime: from Wolfram MathWorld
[9] Hua, L.K. (2009) [1965]. Additive Theory of Prime Numbers. Translations of Mathematical Monographs. 13. Providence, RI: American Mathematical Society. pp. 176–177.
[10] Goldston, D.A.; Graham, S.; Pintz, J.; Yildirim, C.Y. Small gaps between primes or almost primes. Trans. Am. Math. Soc. 2009, 361, 5285–5330
[11] Ambedkar, B.R.; Bedi, S.S. A New Factorization Method to Factorize RSA Public Key Encryption. Int. J. Comput. Sci. Issues (IJCSI) 2011, 8, 242–247
[12] Tiyaonse Chisanga Kabwe"Introducing a New Standard Formula for Finding Prime Numbers", International Journal of Mathematics Trends and Technology (IJMTT). V25(1):59-109 September 2015. ISSN:2231-5373. www.ijmttjournal.org. Published by Seventh Sense Research Group.
[13] McKee, J. Turning Euler’s factoring method into a factoring algorithm. Bull. Lond. Math. Soc. 1996, 28, 351–355. [CrossRef]
[14] Kaddoura, I.; Abdul-Nabi, S. On formula to compute primes and the nth prime. Appl. Math. Sci. 2012, 6, 3751–3757
[15] Hiary, G.A. A Deterministic Algorithm for Integer Factorization. Math. Comput. 2016, 85, 2065–2069. [CrossRef]
[16] Neeraj Anant Pande"Maximum Spacing’s between 2-PrimeFactors Numbers till 1 Trillion", International Journal of Mathematics Trends and Technology (IJMTT). V52(5):311-321 December 2017. ISSN:2231-5373. www.ijmttjournal.org. Published by Seventh Sense Research Group.