Volume 67 | Issue 2 | Year 2021 | Article Id. IJMTT-V67I2P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I2P508
Zoran Trifunov, Liridon Zenku, Teuta Jusufi-Zenku, "Application of Newton’s Backward Interpolation Using Wolfram Mathematica," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 2, pp. 53-56, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I2P508
[1] Fatmir Hoxha, Metoda të analizës numerike, Infbotues, Tiranë, 2008.
[2] Трпеновски Б., Целакоски Н., Елементи од нумеричката математика, Просветно Дело, Скопје, 1992.
[3] Chakrabarty, Dhritikesh. (2017). Backward Divided Difference: Representation of Numerical Data by a Polynomial Curve. 2. 1 – 6.
[4] Wolfram Mathematica, link: https://en.wikipedia.org/wiki/Wolfram_Mathematica [online accessed on 06.01.2020].
[5] Key Indicators from theme: Education and Science, State Statistical Office, link: http://www.stat.gov.mk/IndikatoriTS_en.aspx?id=5 [online accessed on 25.06.2019]
[6] Richard L. Burden, J. Douglas Faires, Numerical Analysis, Brooks Cole Pub., 2011.
[7] Stojanovska L. Trifunov Z. (2010) „Constructing and Exploring Triangles with GeoGebra“. Anale Seria Informatica, Vol VIII, Fac.2, România, pp. 45-54.
[8] Trifunov Z., Karamazova E., … (2015) „Introduction of discrete and continuous random variable“. LAP LAMBERT Academic Publishing. ISBN: 978-3-659-79405-6
[9] Biswajit Das, Dhritikesh Chakrabarty (2016) „ Newton’s backward interpolation: Representation of numerical data by a polynomial curve“, International Journal of Applied Research 2016; 2(10): 513-517, pp 513-517.
[10] Robert J Schilling, Sandra L Harries. „Applied Numerical Methods for Engineers“, Brooks /Cole, Pacific Grove, CA, 2000
[11] A. Favieri, (2018), „Hypertext on laplace transform using wolfram mathematica“, INTED2018 Proceedings, ISBN: 978-84-697-9480-7, ISSN: 2340-1079, pp. 4979-4986