Application of Newton’s Backward Interpolation Using Wolfram Mathematica

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2021 by IJMTT Journal
Volume-67 Issue-2
Year of Publication : 2021
Authors : Zoran Trifunov, Liridon Zenku, Teuta Jusufi-Zenku
  10.14445/22315373/IJMTT-V67I2P508

MLA

MLA Style: Zoran Trifunov, Liridon Zenku, Teuta Jusufi-Zenku. "Application of Newton’s Backward Interpolation Using Wolfram Mathematica" International Journal of Mathematics Trends and Technology 67.2 (2021):53-56. 

APA Style: Zoran Trifunov, Liridon Zenku, Teuta Jusufi-Zenku(2021). Application of Newton’s Backward Interpolation Using Wolfram Mathematica. International Journal of Mathematics Trends and Technology, 53-56.

Abstract
Interpolation is one of the most basic and most useful numerical techniques. It constitutes an irreplaceable tool during work with tabular or graphical functions. The Newton’s backward interpolation is one of most important numerical techniques which have huge application in mathematics, computer science and technical science. This paper provides an analytical description of Newton's backward interpolation and how Wolfram Mathematica software can be used to solve the problems from Newton's backward interpolation.

Reference

[1] Fatmir Hoxha, Metoda të analizës numerike, Infbotues, Tiranë, 2008.
[2] Трпеновски Б., Целакоски Н., Елементи од нумеричката математика, Просветно Дело, Скопје, 1992.
[3] Chakrabarty, Dhritikesh. (2017). Backward Divided Difference: Representation of Numerical Data by a Polynomial Curve. 2. 1 – 6.
[4] Wolfram Mathematica, link: https://en.wikipedia.org/wiki/Wolfram_Mathematica [online accessed on 06.01.2020].
[5] Key Indicators from theme: Education and Science, State Statistical Office, link: http://www.stat.gov.mk/IndikatoriTS_en.aspx?id=5 [online accessed on 25.06.2019]
[6] Richard L. Burden, J. Douglas Faires, Numerical Analysis, Brooks Cole Pub., 2011.
[7] Stojanovska L. Trifunov Z. (2010) „Constructing and Exploring Triangles with GeoGebra“. Anale Seria Informatica, Vol VIII, Fac.2, România, pp. 45-54.
[8] Trifunov Z., Karamazova E., … (2015) „Introduction of discrete and continuous random variable“. LAP LAMBERT Academic Publishing. ISBN: 978-3-659-79405-6
[9] Biswajit Das, Dhritikesh Chakrabarty (2016) „ Newton’s backward interpolation: Representation of numerical data by a polynomial curve“, International Journal of Applied Research 2016; 2(10): 513-517, pp 513-517.
[10] Robert J Schilling, Sandra L Harries. „Applied Numerical Methods for Engineers“, Brooks /Cole, Pacific Grove, CA, 2000
[11] A. Favieri, (2018), „Hypertext on laplace transform using wolfram mathematica“, INTED2018 Proceedings, ISBN: 978-84-697-9480-7, ISSN: 2340-1079, pp. 4979-4986

Keywords : Backward, Interpolation, Mathematics, Wolfram