Volume 67 | Issue 3 | Year 2021 | Article Id. IJMTT-V67I3P508 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I3P508
Loubna Karbil, Ahmad Sani, Imane Daoudi, "Collective Bayesian Matrix factorization Hashing for cross-modal retrieval," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 3, pp. 58-69, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I3P508
[1] W. Wang, X. Yang, B. C. Ooi, D. Zhang, and Y. Zhuang, “Effectivedeep learning-based multi-modal retrieval,” VLDBJ, vol. 25, no. 1, pp.79–101, 2016.
[2] PEREIRA, Jose Costa, COVIELLO, Emanuele, DOYLE, Gabriel, et al. On the role of correlation and abstraction in cross-modal multimedia retrieval. IEEE transactions on pattern analysis and machine intelligence, 2013, vol. 36, no 3, p. 521-535.
[3] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised hashing with kernels. In CVPR. IEEE, 2012.
[4] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In ICCV. IEEE, 2009.
[5] KUMAR, Shaishav et UDUPA, Raghavendra. Learning hash functions for cross-view similarity search. In : Twenty-second international joint conference on artificial intelligence. 2011.
[6] WEISS, Yair, TORRALBA, Antonio, FERGUS, Robert, et al. Spectral hashing. In : Nips. 2008. p. 4.
[7] ZHU, Xiaofeng, HUANG, Zi, SHEN, Heng Tao, et al. Linear cross-modal hashing for efficient multimedia search. In : Proceedings of the 21st ACM international conference on Multimedia. 2013. p. 143-152.
[8] ZHEN, Yi et YEUNG, Dit Yan. Co-regularized hashing for multimodal data. Advances in neural information processing systems, 2012, vol. 2, p. 1376.
[9] SONG, Jingkuan, YANG, Yang, YANG, Yi, et al. Inter-media hashing for large-scale retrieval from heterogeneous data sources. In : Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. 2013. p. 785-796.
[10] WANG, Di, GAO, Xinbo, WANG, Xiumei, et al. Multimodal discriminative binary embedding for large-scale cross-modal retrieval. IEEE Transactions on Image Processing, 2016, vol. 25, no 10, p. 4540-4554.
[11] SHEN, Xiaobo, SHEN, Fumin, SUN, Quan-Sen, et al. Multi-view latent hashing for efficient multimedia search. In : Proceedings of the 23rd ACM international conference on Multimedia. 2015. p. 831-834.
[12] ZHANG, Dan, WANG, Fei, et SI, Luo. Composite hashing with multiple information sources. In : Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval. 2011. p. 225-234.
[13] ZHOU, Jile, DING, Guiguang, et GUO, Yuchen. Latent semantic sparse hashing for cross-modal similarity search. In : Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. 2014. p. 415-424.
[14] WANG, Di, GAO, Xinbo, WANG, Xiumei, et al. Semantic topic multimodal hashing for cross-media retrieval. In : Twenty-fourth international joint conference on artificial intelligence. 2015.
[15] WANG, Di, WANG, Quan, et GAO, Xinbo. Robust and flexible discrete hashing for cross-modal similarity search. IEEE Transactions on Circuits and Systems for Video Technology, 2017, vol. 28, no 10, p. 2703-2715.
[16] ZHANG, Dongqing et LI, Wu-Jun. Large-scale supervised multimodal hashing with semantic correlation maximization. In : Proceedings of the AAAI conference on artificial intelligence. 2014.
[17] LIN, Zijia, DING, Guiguang, HU, Mingqing, et al. Semantics-preserving hashing for cross-view retrieval. In : Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 3864-3872.
[18] JIANG, Qing-Yuan et LI, Wu-Jun. Deep cross-modal hashing. In : Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. p. 3232-3240.
[19] LI, Chuan-Xiang, YAN, Ting-Kun, LUO, Xin, et al. Supervised robust discrete multimodal hashing for cross-media retrieval. IEEE Transactions on Multimedia, 2019, vol. 21, no 11, p. 2863-2877.
[20] SUN, Changchang, SONG, Xuemeng, FENG, Fuli, et al. Supervised hierarchical cross-modal hashing. In : Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2019. p. 725-734.
[21] JIN, Lu, LI, Zechao, et TANG, Jinhui. Deep semantic multimodal hashing network for scalable image-text and video-text retrievals. IEEE Transactions on Neural Networks and Learning Systems, 2020.
[22] YAN, Cheng, BAI, Xiao, WANG, Shuai, et al. Cross-modal hashing with semantic deep embedding. Neurocomputing, 2019, vol. 337, p. 58-66.
[23] CHEN, Yaxiong et LU, Xiaoqiang. Deep discrete hashing with pairwise correlation learning. Neurocomputing, 2020, vol. 385, p. 111-121.
[24] DING, Guiguang, GUO, Yuchen, et ZHOU, Jile. Collective matrix factorization hashing for multimodal data. In : Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. p. 2075-2082.
[25] KARBIL, Loubna et DAOUDI, Imane. Large-Scale Supervised Hashing for Cross-Modal Retreival. In : 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA). IEEE, 2017. p. 803-808.
[26] ZHAO, Huan, WANG, Song, SHE, Xiaolin, et al. Supervised Matrix Factorization Hashing With Quantitative Loss for Image-Text Search. IEEE Access, 2020, vol. 8, p. 102051-102064.
[27] XIONG, Haixia, OU, Weihua, YAN, Zengxian, et al. Modality-specific matrix factorization hashing for cross-modal retrieval. Journal of Ambient Intelligence and Humanized Computing, 2020, p. 1-15.
[28] WANG, Di, WANG, Quan, HE, Lihuo, et al. Joint and individual matrix factorization hashing for large-scale cross-modal retrieval. Pattern Recognition, 2020, vol. 107, p. 107479.
[29] MNIH, Andriy et SALAKHUTDINOV, Russ R. Probabilistic matrix factorization.
[30] Advances in neural information processing systems, 2007, vol. 20, p. 1257-1264.
[31] SALAKHUTDINOV, Ruslan et MNIH, Andriy. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In : Proceedings of the 25th international conference on Machine learning. 2008. p. 880-887.
[32] GANTNER, Zeno, DRUMOND, Lucas, FREUDENTHALER, Christoph, et al. Learning attribute-to-feature mappings for cold-start recommendations. In : 2010 IEEE International Conference on Data Mining. IEEE, 2010. p. 176-185.
[33] GELFAND, Alan E. Gibbs sampling. Journal of the American statistical Association, 2000, vol. 95, no 452, p. 1300-1304.
[34] CHUA, Tat-Seng, TANG, Jinhui, HONG, Richang, et al. Nus-wide: a real-world web image database from national university of singapore. In : Proceedings of the ACM international conference on image and video retrieval. 2009. p. 1-9. http://www.svcl.ucsd.edu/projects/crossmodal/.
[35] RASIWASIA, Nikhil, COSTA PEREIRA, Jose, COVIELLO, Emanuele, et al. A new approach to cross-modal multimedia retrieval. In : Proceedings of the 18th ACM international conference on Multimedia. 2010. p. 251-260.
[36] HARDOON, David R., SZEDMAK, Sandor, et SHAWE-TAYLOR, John. Canonical correlation analysis: An overview with application to learning methods. Neural computation, 2004, vol. 16, no 12, p. 2639-2664.
[37] YAO, Tao, HAN, Yaru, WANG, Ruxin, et al. Efficient discrete supervised hashing for large-scale cross-modal retrieval. Neurocomputing, 2020, vol. 385, p. 358-367.
[38] WANG, Di, GAO, Xinbo, WANG, Xiumei, et al. Multimodal discriminative binary embedding for large-scale cross-modal retrieval. IEEE Transactions on Image Processing, 2016, vol. 25, no 10, p. 4540-4554.
[39] ZHU, Xiaofeng, HUANG, Zi, SHEN, Heng Tao, et al. Linear cross-modal hashing for efficient multimedia search. In : Proceedings of the 21st ACM international conference on Multimedia. 2013. p. 143-152.