Cyclotomic Numbers In The Ring R8pnq = GF(l)[x]/(x8pnq-1)(n≥1)
![]() |
International Journal of Mathematics Trends and Technology (IJMTT) | ![]() |
© 2021 by IJMTT Journal | ||
Volume-67 Issue-4 | ||
Year of Publication : 2021 | ||
Authors : Dr. Ranjeet Singh |
||
![]() |
MLA Style: Dr. Ranjeet Singh "Cyclotomic Numbers In The Ring R8pnq = GF(l)[x]/(x8pnq-1)(n≥1)" International Journal of Mathematics Trends and Technology 67.4 (2021):96-100.
APA Style: Dr. Ranjeet Singh(2021). Cyclotomic Numbers In The Ring R8pnq = GF(l)[x]/(x8pnq-1)(n≥1) International Journal of Mathematics Trends and Technology, 96-100.
Abstract
Explicit expressions for all the 24n+9 Cyclotomic numbers in the ring R8pnq = GF(l)[x]/(x8pnq-1), where p,q,l are distinct odd primes o(l)8pn =Φ(8pn)/2,(n≥1) and o(l)q=Φ(q)/2 with gcd (Φ(8pn)/2,Φ(q)/2)=1, are obtained.
Reference
[1] Arora S.K., M. Pruthi, Minimal cyclic codes of prime power length”, Finite Fields Appl., 3(1997), 99-113.
[2] Arora.S.K., M. Pruthi, Minimal cyclic codes of length 2pn", Finite Fields Appl., 5 (1999), 177-187.
[3] Anuradha Sharma, Bakshi.G.K. Dumir V.C., M. Raka, Cyclotomic Numbers and Primitive idempotents in the ring GF(l)[x]/<xpn -1>, Finite Fields Appl., 10(2004), 653-673.
[4] Bakshi G.k., Madhu Raka, Minimal cyclic codes of length pnq, Finite Fields Appl., 9(2003), 432-448.
[5] M. Pruthi. Cyclic codes of length 2m, Proc. Indian Acad. Sci., 111(2001), 371-379.
[6] F. J. Macwilliams and N. J. A. Sloane, The Theory of Errer Correcting Codes, North Holland, Amsterdam, 1977.
Keywords : Cyclotomic Numbers