Nirmala Index of Kragujevac Trees

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2021 by IJMTT Journal
Volume-67 Issue-6
Year of Publication : 2021
Authors : Ivan Gutman, V.RKulli, Izudin Redžepović
  10.14445/22315373/IJMTT-V67I6P506

MLA

MLA Style: Ivan Gutman, V.RKulli, Izudin Redžepović  "Nirmala Index of Kragujevac Trees" International Journal of Mathematics Trends and Technology 67.6 (2021):44-49. 

APA Style: Ivan Gutman, V.RKulli, Izudin Redžepović(2021). Nirmala Index of Kragujevac Trees International Journal of Mathematics Trends and Technology, 44-49.

Abstract
The paper is concerned with the Nirmala index (N) of Kragujevac trees (Kg).The Kragujevac trees are a class of graphs that emerged within the study of the atom-bond connectivity index. The Nirmala index is a recently introduced degree-based structure descriptor. A general combinatorial expression for N(Kg) is established. The trees with minimum and maximum N(Kg)-values are determined.

Reference

[1] V.R.Kulli, Nirmala index, International Journal of Mathematics Trends and Technology, 67(3) (2021) 8-12.
[2] V.R.Kulli and I.Gutman, On some mathematical properties of Nirmala index, Annals of Pure and Applied Mathematics 23(2) (2021) 93-99.
[3] S.A.Hosseini, M.B.Ahmadi and I. Gutman, Kragujevac trees with minimal atom-bond connectivity index, MATCH Communication in Mathematical and in Computer Chemistry 71 (2014) 5-20.
[4] I.Gutman, Kragujevac trees and their energy, Scientific Publications of the State University Novi Pazar, Series A: Applied Mathematics Informatics and Mechanics 6 (2014) 71-79.
[5] A.Ali, K.C.Das, D.Dimitrov and B.Furtula, Atom-bond connectivity index of graphs: A review over extremal results and bounds, Discrete Mathematics Letters 5 (2021) 68-93.
[6] A.Bondy and U.S.R.Murty, Graph Theory with Applications, Macmillan Press, New York, 1976.
[7] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, 2012.
[8] R.Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
[9] V.R.Kulli, Graph indices, in: M. Pal, S. Samanta and A. Pal (eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, Global, Hershey, 2020, pp. 66-91.
[10] I.Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chemical Physics Letters 17 (1972) 535-538.
[11] I.Gutman, V.R.Kulli and I.Redžepović, Sombor index of Kragujevac trees, Scientific Publications of the State University Novi Pazar, Series A: Applied Mathematics Informatics and Mechanics13 (2021) 00-00, in press.
[12] R.Cruz, I.Gutman and J.Rada, Topological indices of Kragujevac trees, Proyecciones Journal of Mathematics 33 (2014) 471-482.
[13] M.Rezaei, S.M.Hosamani, M.R.Farahani and M.K.Jamil, On the terminal Wiener index and Zagreb indices of Kragujevac trees, International Journal of Pure and Applied Mathematics 113 (2017) 617-625.
[14] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Communication in Mathematical and in Computer Chemistry 86 (2021) 11-16.
[15] T.Reti, T. Došlić and A. Ali, On the Sombor index of graphs, Contributions of Mathematics 3 (2021) 11-18[1]
[16] D.Vukičević and M. Gašperov, Bond additive modeling 1. Adriatic indices, Croatica Chemica Acta 83 (2010) 243-260.
[17] V.R.Kulli, The (a, b)-KA indices of polycyclic aromatic hydrocarbons and benzenoid systems, International Journal of Mathematical Trends and Technology 65 (2019) 115-120.

Keywords : Nirmala index, Kragujevac tree, Zagreb index.