Volume 67 | Issue 6 | Year 2021 | Article Id. IJMTT-V67I6P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I6P514
The paper studies the effect of decaying diffusion parameter and exponential advection parameter on the quality of water in aquifer. Taylor series expansion is used to generate the finite difference scheme of Alternating Direction Explicit (ADE) scheme and Alternating Direction Implicit (ADI) scheme. The two schemes are found to be consistent and stable with the model equations.
[1] Bear J. Dynamics of fluids in porous media, Elsvier New York,USA,2nd edition,(1999).
[2] Beny N. Numerical solutions of Partial Differential Equations, MA 3243 Lecture Notes, Naval Postgraduate School, Carlifonia, (2003).
[3] Bobenko A. I., Matthes D. and Suris Y.B., Nonlinear hyperbolic equations in surface theory: Integrablediscretizations and approximation results, Intern. Math. Res. Notices, 10623, (2002), 123-134.
[4] Carnahan B., Luther H.A., Wilkes J.O Applied Numerical Methods (2006), 429-530.
[5] Chapra S. C. and Canale R.P.,. Numerical methods for Engineers WCB / Mc Graw-hill, (1998).
[6] Crank J., The mathematics of diffusion Oxford Univ. Press, London, 2nd edition, (1975)..
[7] Dehghan M., Determination of an Unknown Parameters in a Semi – Linear Parabolic Equation – Mathematical Problem in Engineering – 8(2)(2002) 111-122.
[8] Douglas J. and Gunn J.E.A general formulation of alternating direction Methods in Parabolic and Hyperbolic problems-Numerical Mathematics-6,(2009) 428-453.
[9] Doyo K. nadGofe G., Convergence Rates of Finite Difference Schemes for the Diffusion Equation with Neumann Boundary Conditions. American Journal of Computational and Applied Mathematics, 6(2)(2016) 92-102.
[10] Drazin P. G. and Johnson R. S, Solitons: An Introduction, Cambridge University press, 13(1996), 140-176.
Dr. George Ochieng Ogongo, "The Effect of Decaying Diffusion And Exponential Advection Parameters On Water Quality In Aquifer," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 6, pp. 125-130, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I6P514