Volume 67 | Issue 7 | Year 2021 | Article Id. IJMTT-V67I7P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I7P515
Mrinalini Smita, "Logistic Regression Model For Predicting Performance of S&P BSE30 Company Using IBM SPSS," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 7, pp. 118-134, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I7P515
[1] Miao, K., Chen, F. & Zhao, Z.G., Stock price forecast based on bacterial colony RBF neural network., Journal of Qingdao University (Natural Science Edition), ISSN: 1006-1037 2(11) (2007).
[2] Ngunyi, A., Mwita, P.N., Odhiambo,R.O., On the estimation of properties of logistic regression Parameters, IOSR Journals of Mathematics.,e-ISSN:2278-5728,10(4) (2014) 57-68
[3] Ali, S.S. , Mubeen, M., Lal, I., Hussain , A., Prediction of stock performance by using logistic regression model: evidence from Pakistan Stock Exchange (PSX), Asian Journal of Empirical Research, 8(7) (2018) 247-258 ISSN (P): 2306-983X, ISSN (E): 2224-4425 Journal of Business Intelligence and Data Mining, ISSN:1743-8195,9(2) 145-160.
[4] Fama, E. F., & French, K. R., The cross‐section of expected stock returns”. The Journal of Finance, 47(2) (1992) ISSN: 0022-1082, 427-465.
[5] Aminian, F., Suarez, E. D., Aminian, M., & Walz, D. T., Forecasting economic data with neural networks”. Computational Economics, 28(1) (2006) ISSN: 0927-7099, 71-88.
[6] Harvey, C. R., Predictable risk and returns in emerging markets”. The Review of Financial Studies, ISSN: 0893-9454, 8 (1995) 773-816.
[7] Jung, C., & Boyd, R., Forecasting UK stock prices., Applied Financial Economics, ISSN: 09603107, 14664305, 6 (1996) 279-286.
[8] Al-Loughani, N., & Chappell, D., Modelling the day-of-the-week effect in the Kuwait Stock Exchange: a nonlinear GARCH representation., Applied Financial Economics, ISSN: 9603107, 14664305,11(4) (2001) 353-359.
[9] Chen, A. S., Leung, M. T., & Daouk, H., Application of neural networks to an emerging financial market: Forecasting and trading the Taiwan Stock Index., Computers and Operations Research, ISSN: 0305-0548,30(6) (2003) 901-923
[10] Lee, S., Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS., Environmental Management, ISSN: 1095-8630,34(2) (2004) 223-232.
[11] Pardo, J. A., Pardo, L., & Pardo., Minimum Ө-divergence estimator in logistic regression models., Statistical Papers, ISSN: 09325026, 16139798, 47 (2005) 91-108.
[12] Yumlu, S., Gürgen, F. S., & Okay, N., A comparison of global, recurrent and smoothed-piecewise neural models for Istanbul stock exchange (ISE) prediction., Pattern Recognition Letters, 26(13) (2005) ISSN: 0167-8655,2093-2103.
[13] Lee, S., Ryu, J., & Kim, L., Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models”. Case study of Youngin, Korea, Landslides, CFKO200430710677778, 4 (2007) 327-338.
[14] Kumar, P. R., & Ravi, V., Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review., European Journal of Operational Research, ISSN: 0377-2217, 180(1) (2007) 1-28
[15] Öğüt, H., Doganay, M. M., & Aktaş, R., Detecting stock-price manipulation in an emerging market: The case of Turkey., Expert Systems with Applications 36(9) (2009) ISSN: 0957-4174, 11944-11949.
[16] Min, J. H., & Jeong, C., A binary classification method for bankruptcy prediction., Expert Systems with Applications, ISSN: 0957-4174,36(3) (2009) 5256-5263.
[17] Mostafa, M. M. (2010). “Forecasting stock exchange movements using neural networks: Empirical evidence from Kuwait”. Expert Systems with Application, ISSN: 0957-4174, 37(9), 6302-6309.
[18] Chen, Mu-Yen. (2011) “Predicting corporate financial distress based on integration of decision tree classification and logistic regression”, Expert Systems with Applications, ISSN: 0957-4174, 38(9), 11261-11272.
[19] Guresen, Erkam, et al. (2011). “Using artificial neural network models in stock market index prediction”, Expert Systems with Applications, ISSN: 0957-4174, 38 (8), 10389-10397.
[20] Dutta, A., et al. (2008). “Classification and Prediction of Stock Performance using Logistic Regression: An Empirical Examination from Indian Stock Market”, Redefining Business Horizons: McMillan Advanced Research Series, ISSN: 0007-6813, 46-62.