Volume 68 | Issue 4 | Year 2022 | Article Id. IJMTT-V68I4P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I4P507
Received | Revised | Accepted |
---|---|---|
11 Mar 2022 | 13 Apr 2022 | 17 Apr 2022 |
Topological invariants are such numbers or set of numbers that describe topology of structures. Virtually 200 topological invariants are calculated so far. In this paper, a comparative study of the symmetric division degree topological invariant with some well-known and mostly used graph invariants in a regular (or) biregular graph is performed.
[1] B. Furtula, K. C. Das, I. Gutman, Comparative Analysis of Symmetric Division Deg Invariant as Potentially Useful Molecular Descriptor, International Journal of Quantum Chemistry. 118(17) (2018) e25659.
[2] C. K. Gupta, V. Lokesha, B. Shwetha Shetty, P. S. Ranjini, Graph Operations on the Symmetric Division Deg Invariant of Graphs, Palestine Journal of Mathematics. 5 (2016) 117.\
[3] C. K. Gupta, V. Lokesha, B. Shwetha Shetty, P. S. Ranjini, On the Symmetric Division Deg Invariant of Graph, Southeast Asian Bulliten of Mathematics. 41 (2016) 117.
[4] Jos´e Luis Palacios, New Upper Bounds for the Symmetric Division Deg Invariant of Graphs, Discrete Mathamatics Letters. 2 (2019) 52-56.
[5] A. Ili´c, G. Yu, L. Feng, On the Eccentric Distance Sum of Graphs, Journal of MathematicalAnalysis and Applications. 381 (2011) 590-600.
[6] H. Kober, On the Arithmetic and Geometric Means and On Holder S Inequality, Proccedins ofAmerican Mathematical Socity. 9 (1958) 452-459.
[7] V. Lokesha, T. Deepika, Symmetric Division Deg Invariant of Tricyclic and Tetracyclic Graphs, International Journal of Science and Engineering Research. 7 (2016) 5317.
[8] G. Mohanappriya, D. Vijayalakshmi, Symmetric Division Degree Invariant and Inverse Sum Invariant of Transformation Graph, IOP Confrence Series, Journal of Physics. 1139 (2018) 012048.
[9] S. Nikolic, G. Kovacevic, A. Milicevic, N.Trinajstic, The Zagreb Indices 30 Years After, Croatica Chemica Acta. 76 (2003) 113-124.
[10] B.C. Rennie, On a Class of Inequalities, Journal of Australian Mathematical Socity. 3 (1963) 442-448.
[11] J. Radon, Theory and Applications of the Absolutely Additive Set Functions, Conference Report. Acad. Wissen. Wien. 122 (1913) 1295-1438.
[12] G. P´olya , G. Szego, Problems and Theorems in Analysis, Series, Integral Calculus, Theory of Functions, Springer-Verlag, Berlin. (1972).
[13] M. Randi´c, On Characterization of Molecular Branching, Jornal of American Chemical Socity. 97 (1975) 6609-6615.
[14] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim. (2000).
[15] D. Vukicevi´C, M. Gasperov, Bond Aditive Modelling 1. Ariatic Indices, Croatica Chemica Acta. 83 (2010) 243-260.
[16] A. Vasilev, Upper and Lower Bounds of Symmetric Division Deg Index, Iranian Journal of Mathematical Chemistry. 5(2) (2014) 91-98.
[17] J. M. Rodriguez, J.M. Sigarreta, On the Geometric Arithmetic Index, MATCH Communications in Mathematical and in Computer Chemistry. l74 (2015) 103170.
[18] M. Ghorbani, S. Zangi, N. Amraei, New Results on Symmetric Division Deg Index, Journal of Applied Mathematics and Computing. 65 (2021) 161-176.
[19] R. Aguilar-Sanchez, J. A. Mendez-Bermudez, Jose M. Rodriguez, Jose M. Sigarreta, Analytical and Computational Properties of the Variable Symmetric Division Deg Index. arXiv:2106.00913.
[20] Z. Wang, Y. Mao, Y. Li, B. Furtula, On Relations Between Sombor and Other Degree-Based Indices, Journal of Applied Mathematics and Computing. (2021). https://doi.org/10.1007/s12190-021-01516-x.
[21] J.M. Rodrlguez, J. L. Sanchez, J.M. Sigarreta, E. Tourls, Bounds on the Arithmetic-Geometric Index, Symmetry. 13(4) (2021) 689. https://doi.org/10.3390/sym13040689
P. Murugarajan, R. Aruldoss, "Lower Bounds for Symmetric Division Degree Invariant of Graphs," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 4, pp. 38-42, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I4P507