Volume 68 | Issue 4 | Year 2022 | Article Id. IJMTT-V68I4P512 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I4P512
Received | Revised | Accepted |
---|---|---|
16 Mar 2022 | 18 Apr 2022 | 30 Apr 2022 |
Explicit expressions for all the 8(nd+1) Cyclotomic Cosets in the ring where p is of the type (8k+1) and l are distinct odd primes n p an intger, are obtained .
[1] M.Raka, G.K. Bakshi, A. Sharma V.C. Dumir, Cyclotomic Numbers and Primitive Idempotents in the Ring Rpn = GF(l) [x]/(xpn-1), Finite Field & Their Appl. 3(2) (2004) 653-673.
[2] S.K. Arora, M. Pruthi, Minimal Cyclic Codes of Prime Power Length, Finite Fields Appl. 3 (1997) 99-113.
[3] S.K. Arora, M. Pruthi, Minimal Cyclic Codes of Length 2pn , Finite Fields Appl. 5 (1999) 177-187.
[4] Anuradha Sharma, G.K.Bakshi, V.C. Dumir, M. Raka, Cyclotomic Numbers and Primitive Idempotents in the Ring GF (l)[x]/, Finite Fields Appl. 10 (2004) 653-673.
[5] G.K.Bakshi, Madhu Raka, Minimal Cyclic Codes of Length pnq, Finite Fields Appl. 9 (2003) 432-448.
[6] M. Pruthi, Cyclic codes of length 2m, Proc. Indian Acad. Sci. 111 (2001) 371-379.
[7] S.K. Arora and M. Pruthi, Minimal Cyclic Codes Length 2pn, Finite Field and their Applications. 5 (1999) 177-187.
[8] H. Girrifin, Elementary Theory of Numbers, MaGraw-Hill Book Company, New York. (1954).
[9] H. Janwa and A. K. Lal, On the Generalized Hamming Weights of Cyclic Codes, IEEE Trans. Inform. Theory. 43(1) (1997) 299-308.
[10] H. N. Ward, Quadratic Codes of Length 27, IEEE Trans. Inform. Theory. 36(4) (1990) 950-953.
[11] H. N. Ward, Quadratic Residue Codes and Symplectic Groups, Journal of Algerba. 29(1974) 150-171.
[12] I. F. Blake, Algebraic Coding Theory, History and Developments, Dowdes, Hustechson and Ross, Inc. Stroudsberg. (1973).
[13] I. F. Blake and R. C. Mullin, The Mathematical Theory of Coding, Academic Press, New York. (1975).
[14] I.N. Herstein, Non-Commutative Rings, Carus Math. Monographs, Math. Assoc. Amer. (15) (1968).
[15] I. S. Reed, A Class of Multiple Error Correcting Codes and the Decoding Scheme, IRE Trans. on Inform. Theory, IT. (4) (1954) 38-49.
[16] Ian F. Blare, Distance Properties of the Group Code of Gaussian Channel, SIAM J. Appl. Math. 23 (1972) 312-324.
[17] Ian F. Blare, Permutation Codes for Discrete Channel, IEEE Trans. Inform. Theory. 20 (1974) 138-140.
[18] Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, John Wiley and Sons Inc, New York. (1960).
[19] J. E. Bartow, A Reduced Upper Bound on the Error Ability of Codes, IEEE Trans. Inform. Theory. 9 (1963) 46.
[20] J. E. Bartow, A Upper Bound on the Error Ability of Codes, IEEE Trans. Inform. Theory. 9 (1963) 290.
[21] J. H. Conway and N. J. A. Sloane, Self Dual Codes over the Integers Modulo 4, J. Comb. Theory (A). 62 (1993) 30-45.
[22] J. H. Conway, R. T. Curtis, P. S. Nortan, R. A. Parker and R. A. Wilson, Atlas of the Finite Groups, Oxford U. K. Clarendon Press. (1985).
[23] J. H. Humphreys and M. Y. Prest, Numbers, Groups, and Codes, Cambridge University Press, Cambridge, New York. (1989).
[24] J. H. VanLint and F. J. MacWilliams, Generalised Quadratic Residue Codes, IEEE Trans. Inform. Theory. 24(6) (1978) 730-737
Ranjeet Singh, "Cyclotomic Cosets in the Ring R8pn = GF(l)[x]/(x8pn -1)," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 4, pp. 81-83, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I4P512