Volume 68 | Issue 6 | Year 2022 | Article Id. IJMTT-V68I6P509 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I6P509
| Received | Revised | Accepted | Published |
|---|---|---|---|
| 17 Apr 2022 | 30 May 2022 | 04 Jun 2022 | 25 Jun 2022 |
Arian Syaputra, Rado Yendra, Muhammad Marizal, Ari Pani Desvina, Rahmadeni, "Wind Speed Modelling using Some Modified Gamma Distribution," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 6, pp. 87-95, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I6P509
[1] J. A. Carta, and P. Ramirez, Analysis of Two-Component Mixture Weibull Statistics for Estimation of Wind Speed Distributions. Renew. Energy, 32 (2007) 518–31.
[2] J. S. Almalki, and J. Yuan, A New Modified Weibull Distribution. Reliability Engineering and System Safety, 111 (2013) 164–170.
[3] J. A. Carta, C. Bueno, P. Ramirez, Statistical Modelling of Directional Wind Speeds using Mixture of Von Mises Distributions: Case Study, Energy Conversion and Management, 49 (2008) 897-907.
[4] R. Kollu, S. R. Rayapudi, S. V. L. Narasimham, and K. M. Pakkurthi, Mixture Probability Distribution Functions to Model Wind Speed Distributions. Int J Energy Environ Eng, 3(27) (2012).
[5] A. I. A. Sayed, and S. R. M. Sabri, Transformed Modified Internal Rate of Return on Gamma Disitribution for Logn Term Stock Investment Modelling. Journal of Management Information and Decision Sciences, 25(S2) (2022) 1-17.
[6] S. Toure, Investigations Into Some Simple Expressions of the Gamma Function in Wind Power Theoretical Estimate by the Weibull Distribution. Journal of Applied Mathematics and Physics, 7(12) (2019) 2990 – 3002. Https://Doi.Org/10.4236/Jamp.2019.712209
[7] M. H. Al Buhairi, A Statistical Analysis of Wind Speed Data and an Assessment of Wind Energy Potential in Taiz-Yemen. Ass. Univ. Bull. Environ. Res. 9(2) (2006) 21-33.
[8] P. Ivana, S. Zuzana, and M. Maria, Application of Four Probability Distributions for Wind Speed Modeling, Precedia Engineering, 192 (2017) 713 – 718.
[9] W. P. L. Fernando, and D. U. J. Sonnadara, Modelling Wind Speed Distributions in Selected Weather Stations. Proceeding of the Technical Session. 23 (2007) 1-6.
[10] S-K. Sim, P. Maass, and P. G. Lind, Wind Speed Modeling by Nested ARIMA Processes. Energies. 12(1) (2019) 69.
[11] P. Chen, T. Pedersen, B. Bak-Jensen, and Z. Chen, ARIMA-Based Time Series Model of Stochastic Wind Power Generation. IEEE Trans. Power Syst. 25(2) (2010) 667–676.
[12] A. Kadhem, N. Wahab, I. Aris, J. Jasni, and A. N. Abdalla, Advanced Wind Speed Prediction Model Based on a Combination of Weibull Distribution and an Artificial Neural Network. Energies. 10(11) (2017) 1744.
[13] D. K. Kaoga, D. Y. Serge, D. Raidandi, and N. Djongyang, Performance Assessment of Two-Parameter Weibull Distribution Methods for Wind Energy Applications in the District of Maroua in Cameroon. Int. J. Sci. Basic Appl. Res. (IJSBAR). 17(1) (2014) 39–59.
[14] M. Al-Muhaini, A. Bizrah, G. Heydt, and M. Kalid, Impact of Wind Speed Modelling on the Predictive Reliability Assessment of Wind-Based Microgrids. the Institution of Engineering and Tecnology. 13(15) (2019) 2947-2956.
[15] E. Dokur, M. Kurban, and S. Cehyan, Wind Speed Modelling Using Inverse Weibull Distrubition: A Case Study for Bilecik, Turkey. International Journal of Energy Applications and Technologies. 3 (2) (2016) 55 – 59.
[16] I. Pobocikova, Z. Sedliackova, and M. Michalkova, Application of Four Probability Distributions for Wind Speed Modeling. Procedia Engineering. 192(2017) 713 – 718.
[17] J. Wang, J. Hu, and K. Ma, Wind Speed Probability Distribution Estimation and Wind Energy Assessment. Elsevier. 60 (2016) 881- 889.
[18] N. Maserran, Integrated Approach for the Determination of an Accurate Wind-Speed Distribution Model. Elsevier. 173(2018) 56-64.
[19] U. Eric, O. Michael, O. Olusola, and C. F. Eze, A Study of Properties and Applications of Gamma Distribution. African Journal of Mathematics and Statistics Studies. 4(2) (2021) 52-65.
[20] A. I. A. Sayed, and S. S. R. Muhammad, A Simulation Study on the Simulated Annealing Algorithm in Estimating the Parameters of Generalized Gamma Distribution. Science and Technology Indonesia. 7(1) (2022). 2580-4405.
[21] C. Tomasi, and Tampiere. Infrared Radiation Extinction Sensitivity to the Modified Gamma Distribution Parameters F or Haze and Fog Droplet Polydispersions. Applied Optics. 15(11) (1976) 2906-2912.
[22] G. W. Petty, and W. Huang, the Modified Gamma Size Distribution Applied to Inhomogeneous and Nonspherical Particles: Key Relationships and Conversions. Journal of the Atmospheric Sciences. 68 (2011) 1460-1473.
[23] M. Mead, M. Nassar, and S. Dey, A Generalization of Generalized Gamma Distributions. Pakistan Journal and Operation Research. 14(1) (2018) 121-138.
[24] A. A. Bakery, W. Zakaria, and O. K. S. K. Mohamed, A New Double Truncated Generalized Gamma Model with Some Applications. Journal of Mathematics. (2021) 1-27.
[25] A. Golubev, Applications and Implications of the Exponentially Modified Gamma Distribution As A Model for Time Variabilities Related to Cell Proliferation and Gene Expression. Journal of Theoretical Biology. 393 (2016) 203-217.
[26] S. Cakmakyapan, and G. Ozel, the Poisson Gamma Distribution for Wind Speed Data. International Conference on Advances in Natural and Applied Sciences. AIP Conf. Proc. (2016) 1726.
[27] R. Shanker, F. Hagos, and S. Sujatha, On Modeling of Lifetimes Data Using One Parameter Akash, Lindley and Exponential Distributions. Biometrics & Biostatistics International Journal, 3(2) (2015) 1-10.
[28] R. Shanker, Shanker Distribution and Its Applications. International Journal of Statistics and Applications, 5(6) (2015) 338-348.
[29] R. Shanker, Sujatha Distribution and Its Applications. Statistics in Transition-New Series. 17(3) (2016) 1-20.