The Comparison of Exponential Regression and Exponential Smoothing Holt Winter 2 Variable in Zakat Modelling

International Journal of Mathematics Trends and Technology (IJMTT)
© 2022 by IJMTT Journal
Volume-68 Issue-6
Year of Publication : 2022
Authors : Khairul Amri, Rado Yendra, Muhammad Marizal, Ari Pani Desvina, Rahmadeni

How to Cite?

Khairul Amri, Rado Yendra, Muhammad Marizal, Ari Pani Desvina, Rahmadeni, " The Comparison of Exponential Regression and Exponential Smoothing Holt Winter 2 Variable in Zakat Modelling ," International Journal of Mathematics Trends and Technology, vol. 68, no. 6, pp. 105-110, 2022. Crossref,

Zakat is an important worship for Muslims, where some of the wealth of the rich will be distributed to the poor according to certain rules. Zakat can be used as a source of income for a country, such as Indonesia with a majority Muslim population. This study focuses on modeling zakat in Indonesia using zakat data from 2004 to 2019. The zakat data obtained continues to increase exponentially, therefore the main goal of this study is to find the best model to the zakat data. For this purpose two statistical models, namely the exponential regression model and the exponential smoothing 2 variables will be used and tested to determine the best model to describe zakat in Indonesia. The best model will be selected based on graphical inspection and, numerical criteria namely Mean Absolut Error (MAE) and Mean Square Error (MSE). In most the cases, graphical inspection gave the same result but their MAE and MSE result differed. The best model was chosen as the model with the lowest values of MAE and MSE. In general, the Exponential Smoothing 2 Variables has been selected as the best model.

Keywords : Exponential Regression, Exponential Smoothing 2 Variables, MAE, MSE, Zakat Model.


[1] E. Choiriyah, A. Kafi, I. Hikmah, and I. Indrawan, Zakat And Poverty Alleviation In Indonesia: A Panel Analysis At Provincial Level, Journal of Islamic Monetary Economics and Finance, 6(4) (2020) 811 - 832.
[2] F. A. Nadzri, A. Rahman, and N. Omar, Zakat and Poverty Alleviation: Roles of Zakat Institutions in Malaysia, International Journal of Arts and Commerce, 1(7) (2012) 61 –72.
[3] N. Namdar and R. Hassanzadeh, Developing A Mathematical Equation to Predict Khums and Zakat in the Iranian Economy, Int. J. Zakat, 6(2) (2021) 43-62.
[4] S. Al Parisi, Overview of Forecasting Zakat Collection in Indonesia Using Multiplicative Decomposition, Int. J. Zakat, 2(1) (2017) 45– 59.
[5] F. Bin, M. Belgacem, H. R. H. Prince, and T. Bin, Modeling the stochastic dynamics of Zakaat, Math. Eng. Sci. Aerosp., 1(1) (2010) 91– 103
[6] A. Husti, Ilyas; Akbarizan; Marizal, Muhammad; Yendra, Rado; Fudholi, Forecasting Model Holt’s for the Zakat Collection in Indonesia, Malaysia and Brunai, Soc. Sci., 12(12) (2017). 2370–2374
[7] Akbarizan, M. Marizal, M. Soleh, Hertina, M. A, R. Yendra, and A. Fudholi, Utilization of Holt’s forecasting model for zakat collection in Indonesia, Am. J. Appl. Sci., 13(12) (2016) 1342–1346.
[8] I. R. Sari, Z. Tomi, T. N. E. Sihombing, M. Mahiroh, R. Yendra, and A. Adnan, The Analysist Impacts of Covid-19 on Zakat Revenue in Indonesia Using an Exponential Smoothing Model, International Journal of Mathematics Trends and Technology, 68(5) (2022) 11- 16,
[9] A. G. Partioata. A q-Exponential Regression Model, Sankhya: The Indian Journal of Statistics. 74(1) (2008), 149-170
[10] Z. Wael, and S. Sennaroglu, Performance Comparison of Holt-Winters and SARIMA Models for Tourism Forecasting in Turkey, Dogus Universitesi Dergisi. 21(2) (2020) 63-77.
[11] F. Prataviera, J. C. S. Vasconcelos, G. M. Cordeiro, E. M. Hashimoto, and E. M. M. Ortega, The exponential Power Exponential Regression Model with Different Regression Structures: applicating in nursing data, Journal of applied statistics. 11(1) (2019) 1-31.
[12] L. J. Arthur, Covariance matrix of maximum likelihood estimators in cencored exponential regression models. Communication in Statistic-Theory and methods. 47(24) (2020) 1-14.
[13] M. Fadlihisyam, and J. Asmah. Utilization of holt-winter Forecasting Modle in lembaga Zakat Selangor (LZS) for Zakat Collocttion. Pure and Applied Mathematics. 7(2020) 59-61.
[14] P. M. Regi, Forecasting of Jakarta Islamics Index (JII) Return Using Holt-Winter Family Models. Asian Journal of Islamic Management (AJIM). 3(2) (2021) 111-122.
[15] Nurhamidah, Nusyirwan and A. Faisol, Forecasting Seasonal Time Series Data Using the Holt winters Exponential Smoothing Method of additive Models. Jurnal Matematika Integratif. 16(2) (2020) 151-157.
[16] D. A. Adeyinka and N. Muhajerine, Time Series Prediction Of Under Fivve Mortality Rates For Nigeria:Comparative Analysis Of Artificial Neural Networks, Hol-Winters Exponential Smoothing And Autoregressive Integerated Moving Average Models. BMC medical Research Methodo logy. 20(1) (2020) 1-11
[17] U. Cahyani, Determinant of behavioral intention to use digital zakat payment:The Moderating Role of Knowledge of Zakat. Jurnal Zakat adan Wakaf. 9(1) (2022) 1-16
[18] S. Alfarisi, Overview of Forecasting Zakat Collection in Indonesia Using Multiplicative Decomposition, International Journal of Zakat. 2(1) (2017) 45-59.
[19] I. Ishak, N. S. Othman, and N. H. Harun, Forecasting Electry Consumption of Malaysisa’s Residential Sector:Evidence From an Exponential Smoothing Model. IIARP Publication. [version 1; peer review: awaiting peer review]. F1000Research 2022, (2022) 11:54
[20] S. H. Hafizah, S. U. Ubaidillah, and R. Sallehuddin, Forecasting Zakat Collection Using Artificial Neural Network. Proceeding of The 20th National Symposium on Mathematics Sciences AIP Conf.Proc.1552. (2013) 196-204.
[21] A. Emrah, Weighted-Exponential Regression Model:An alternative to the Gamma Regression Model. International Journal of Modeling, Simulation and Scientific Computing. 10(6,) (2019) 1-15.
[22] N. Wahab, and Rahman, Determinants of Efficienc of Zakat Institutions in Malaysia:A Non Parametric Approach. Asian Journal of Bussiness and Accounting. 6(2) (2013) 33-64.
[23] C. L. Karmaker, Determination of Optimum Smoothing Constant of Single Exponential Smoothing Method: A Case Study. International Journal of Resesarch in Industrial Engineering. 6(3) (2017) 184-192.
[24] P. S. Kalekar. Time Series Using Holt-Winters Exponential Smoothing. Kanwal Rekhi school of information Technology 4329008. 13(2004) 1-13.
[25] S. Muna, and Kuntoro. Application Of The Holt-Winters Exponential Smoothing Method On The Air Pollution Standard Index In Surabaya. Jurnal Biometrika dan Kependudukan. 10(1) (2021) 53-60
[26] J. Duasa, and N. H. Zainal, Probability of Paying Zakat From Micro Finnacing Project Returns. Etikonomi, 19(2) (2020) 333-348.
[27] M. A. Zakaria, M. Zakariah, I. Suciana, Hikmawati, R. Setiawan, Sultan, and A. H. Nasution, Regression Analyisis of Motivation Factors for Paying a Zakat to Strengtheness od Ummah in Kolaka Regency, Jurnal Ekonomi Bisnis Syariah. 1(1) (2017) 1-8.
[28] S. I. Wardani, W. P. Nurmayanti, S. A. Wulandya, and M. Gaali, Implementation of Exponential Smoothing and ARIMA on Collection and Distribution Data of Zakat, Infaq and Shadaqah 2015-2020, The First Seminar Nasional of Science and Technology for Society Development, (2021) 141-153.