Volume 68 | Issue 8 | Year 2022 | Article Id. IJMTT-V68I8P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V68I8P502
Received | Revised | Accepted | Published |
---|---|---|---|
21 Jun 2022 | 22 Jul 2022 | 02 Aug 2022 | 15 Aug 2022 |
Herawati. N, Sayuti. S.F, Nisa. K, Setiawan. E, "The Nonparametric Kernel Method using NadarayaWatson, Priestley-Chao and Gasser-Muller Estimators for the Estimation of the Rainfall Data in Lampung," International Journal of Mathematics Trends and Technology (IJMTT), vol. 68, no. 8, pp. 12-20, 2022. Crossref, https://doi.org/10.14445/22315373/IJMTT-V68I8P502
[1] S. J. Sheather, Density estimation, “Statistical Science,” vol.19,no.4, pp. 588–597, 2004.
[2] S. Halim, and I. Bisono, “Kernel functions on nonparametric regression methods and their applications,” Journal of Industrial Engineering, vol. 8, no.1, pp. 73–81, 2006.
[3] N. Herawati, K. Nisa, and E. Setiawan, “The Optimal Bandwidth for Kernel Density Estimation of Skewed Distribution: A Case Study on Survival Time Data of Cancer Patients,” Proc. National Seminar on Quantitative Method, vol.1, no.1, pp. 380-388, 2017.
[4] M.A. Dakhil and J. N. Hussain, “A Comparative Study of Nonparametric Kernel estimators with Gaussian Weight Function,” Journal of Physics: Conference Series, vol.18, no.1, pp. 1-10, 2021.
[5] I. Puspitasari, Suparti, and Y. Wilandari, “Analysis of the Composite Stock Price Index (JCI) Using the Kernel Regression Model,” Gaussian Journal, vol.1, no.1, pp. 93–102, 2012.
[6] N.A.K.. Rifai, Kernel Nonparametric Regression Approach on Composite Stock Price Index Data, STATISTICS,” Journal of Theoretical Statistics and Its Applications, vol.19, no.1, pp. 53–61, 2019.
[7] D. Suparti, I. P. Safitri, Sari, and A. R. Devi, “Analysis of Inflation Data in Indonesia Using the Kernel Regression Model,” Proceedings of the National Seminar on Statistics, pp. 499-509, 2013.
[8] Suparti, “Analysis of Inflation Data in Indonesia After the 2013 Increase in TDL and BBM Using the Kernel Regression Model,” Statistical Media, vol.6, no.2, pp.103-112, 2013
[9] G. Rubio, H. Pomares, L. J. Herrera, and I. Rojas, “Kernel methods applied to time series forecasting,” Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, Springer-Verlag, pp.782–789, 2007
[10] S. Saidi, N. Herawati, K. Nisa, and E. Setiawan, “Nonparametric Modeling Using Kernel Method for the Estimation of the Covid-19 Data in Indonesia During 2020,” International Journal of Mathematics Trends and Technology, vol. 67, no.6, pp. 136-144, 2021.
[11] W. Syisliawati, Wibowo, and I. N. Budiantara, “Regression Spline Truncated Curve in Nonparametric Regression,” Proc. of 3rd International Conference on Research Implementation and Education of Mathematics and Science, vol.18, no.1 , pp. 115-122, 2016.
[12] M. Y. Mustafa and Z. Y. Algamal, “Smoothing Parameter Selection in Kernel Nonparametric Regression Using Bat Optimization Algorithm,” Journal of Physics: Conference Series, vol.1897, no.1,pp. 1-9, 1897.
[13] S. Molchanov and S. N. Chiu, “Smoothing Techniques and Estimation Methods for Nonstationary Boolean Models with Applications to Coverage Processes,” Biometrics, vol.87, no.2, pp. 265-283, 2012.
[14] M. Rosenblatt, “Remarks on Some Nonparametric Estimates of a Density Function,” The Annals of Mathematical Statistics, vol.33 , pp.832-837, 1956
[15] E. Parzen, “On Estimation of a Probability Density Function and Mode,” The Annals of Mathematical Statistics, vol.33 , pp.1065-1076, 1962.
[16] W.R. Schucany, “On nonparametric regression with higher-order kernels,” Journal of Statistical Planning and Inference, vol.23, no.2 , pp. 145-151, 1989.
[17] S. Weglarczyk, “Kernel Density Estimation and Its Application,” ITM Web of Conferences, vol.23, no.374 , pp. 1-8, 2018.
[18] Nadaraya, E. A, “Some new estimates for distribution functions,” Theory of Probability & Its Applications, vol.9, no.3, pp. 497–500, 1964.
[19] S. Demir and O. Toktamis, On The Adaptive Nadaraya-Watson Kernel Regression Estimators, Hacettepe Journal of Mathematics and Statistics, vol.39, no.3, pp. 429-437, 2010.
[20] K. Konecna, The Priestley-Chao Estimator of Conditional Density with Uniformly Distributed Random Design, statistics, vol.98, no.3, pp. 283-294, 2019.
[21] M. E. Priestley, and M. T. Chao, “Nonparametric function Fitting, Journal of The Royal Statistical Society, vol.34 ,pp. 385-392, 1972.
[22] T. Gasser, and H.-G. Müller,” Kernel Estimation of Regression Functions. In Smoothing Techniques for Curve Estimation, Springer, Berlin, pp.23-68, 1979.
[23] P. Babilua, E. Nadaraya, and G. Sokhadze, “Functionals of Gasser–Muller Estimators,” Turkish Journal of Mathematics, vol.38, no.1, pp. 1090–1101, 2014.
[24] M. C. Jones, J. S. Marron, and S. J. Sheather, “A Brief Survey of Bandwidth Selection for Density Estimation,” Journal of the American Statistical Association, vol.91, no.433, pp. 401-407, 1996.
[25] L. R. Cheruiyot, G. O. Orwa, and O. E. Otieno, “Kernel Function and Nonparametric Regression Estimation: Which Function Is Appropriate,” African Journal of Mathematics and Statistics Studies, vol.3, no.3, pp. 51-59, 2020.
[26] O.M. Eidous, M.A.A.S Maie, and M.A Ebrahem, “A Comparative Study for Bandwidth Selection in Kernel Density Estimation,” Journal of Modern Applied Statistical Methods: JMASM, vol.9, no.1, pp.263-273, 2015.
[27] H. Dhaker, E. H. Deme, P. Ngom, and M. Mbodj, “New Approach for Bandwidth Selection in The Kernel Density Estimation Based on Β-Divergence,” Journal of Mathematical Sciences: Advances and Applications, vol.51, no.1, pp. 57–83, 2018.
[28] G. Kauermann and J. D. Opsomer, Generalized Cross-Validation for Bandwidth Selection of Backfitting Estimates in Generalized Additive Models, Journal of Computational and Graphical Statistics, vol.13, no.1, pp. 66-89, 2014.