...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 70 | Issue 3 | Year 2024 | Article Id. IJMTT-V70I3P103 | DOI : https://doi.org/10.14445/22315373/IJMTT-V70I3P103

A Classification of 4-Degree Tri-Cayley Graphs Over a Group of Order 𝑝q


Xiaohan Ye
Received Revised Accepted Published
16 Jan 2024 26 Feb 2024 15 Mar 2024 30 Mar 2024
Abstract

Symmetry properties are of vital importance for graphs. Meanwhile, graphs with the vertex transitivity are a class of highly symmetrical graphs. A graph 𝛷 is said to be a tri-Cayley graph over a group 𝐻 if it has a semi-regular automorphism group which acts on the vertex set with three orbits of equal length and is isomorphic to 𝐻. In this paper, the vertex transitivity, edge transitivity and arc transitivity of the 4-degree 0-type and 2-type tri-Cayley graphs over a group ℤ𝑝𝑞 are discussed and give the automorphism group of the corresponding vertex transitive graph. 

Keywords

Group ℤ𝒑𝒒, Tri-Cayley graph, Vertex transitive, Automorphism group, Edge transitive.

References

[1] A. Cayley, “Desiderata and Suggestions: No.2. The Theory Of Group: Graphical Representation,” American Journal of Mathematics, vol. 1, no. 2, pp. 174-176, 1878.
[CrossRef] [Google Scholar] [Publisher Link]
[2] Zai-Ping Lu, and Ming-Yao Xu, “On the Normality of Cayley Graphs of Order pq,” Australasian Journal of Combinatorics, vol. 27, pp. 81-93, 2003.
[Google Scholar] [Publisher Link]
[3] C.C. Chen, and N. Quimpo, “Hamiltonian Cayley Graphs of Order PQ,” Combinatorial Mathematics X, pp. 1-5, 1983.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Alexander Araluze et al., “Edge Connectivity in Difference Graphs and Some New Constructions of Partial Sum Families,” European Journal of Combinatorics, vol. 32, no. 3, pp. 352-360, 2011.
[CrossRef] [Google Scholar] [Publisher Link]
[5] Majid Arezoomand, and Bijan Taeri, “On the Characteristic Polynomial of n-Cayley Digraphs,” The Electronic Journal of Combinatorics, vol. 20, no. 3, pp. 1-14, 2013.
[CrossRef] [Google Scholar] [Publisher Link]
[6] M. Arezoomand, “A Note on the Eigenvalues of n-Cayley Graphs,” Matematički Vesnik, vol. 72, no. 4, pp. 351-357, 2020.
[Google Scholar] [Publisher Link]
[7] Ademir Hujdurović, Klavdija Kutnar, and Dragan Marušič, “On Normality of n-Cayley Graphs,” Applied Mathematics and Computation, vol. 332, pp. 469-476, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[8] Jia-Li Du, Marston Conder, and Yan-Quan Feng, “Cubic Core-Free Symmetric m-Cayley Graphs,” Journal of Algebraic Combinatorics, vol. 50, no. 2, pp. 143-163, 2019.
[CrossRef] [Google Scholar] [Publisher Link]
[9] Klavdija Kutnar et al., “Strongly Regular tri-Cayley Graphs,” European Journal of Combinatorics, vol. 30, no. 4, pp. 822-832, 2009.
[CrossRef] [Google Scholar] [Publisher Link]
[10] Istvan Kovacs et al., “Classification of Cubic Symmetric Tricirculants,” The Electronic Journal of Combinatorics, vol. 19, no. 2, pp. 1-14, 2012.
[CrossRef] [Google Scholar] [Publisher Link]
[11] Primož Potočnik, and Micael Toledo, “Classification of Cubic Vertex-Transitive Tricirculants,” Ars Mathematica Contemporanea, vol. 18, no. 1, pp. 1-31, 2020.
[CrossRef] [Google Scholar] [Publisher Link]
[12] John Adrian Bondy, and U.S.R. Murty, Graph Theory with Applications, American Elsevier Publishing Company, pp. 1-264, 1976.
[Google Scholar] [Publisher Link]
[13] Helmut Wielandt, Henry Booker, and D. Allan Bromley, Finite Permutation Groups, Elsevier Science, pp. 1-124, 1964.
[Google Scholar] [Publisher Link]
[14] M.Y. Xu, “Finite Group Preliminary,” Science Press, 2014.
[Google Scholar]

Citation :

Xiaohan Ye, "A Classification of 4-Degree Tri-Cayley Graphs Over a Group of Order 𝑝q," International Journal of Mathematics Trends and Technology (IJMTT), vol. 70, no. 3, pp. 17-22, 2024. Crossref, https://doi.org/10.14445/22315373/IJMTT-V70I3P103

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved