...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 71 | Issue 5 | Year 2025 | Article Id. IJMTT-V71I5P103 | DOI : https://doi.org/10.14445/22315373/IJMTT-V71I5P103

On the Diophantine Equations (𝑥1𝑥2𝑥3 …6)𝑥 + (𝑦1𝑦2𝑦3 …1)𝑦 = 𝑧2 and (𝑥1𝑥2𝑥3…4)2𝑥 + (𝑦1𝑦2𝑦3 …2)5𝑦 = 𝑧2


Smiti Aggarwal, Meenakshi Panchal
Received Revised Accepted Published
20 Mar 2025 25 Apr 2025 14 May 2025 27 May 2025
Abstract

In this paper, the Diophantine equations (𝑥1𝑥2𝑥3…6)𝑥 +(𝑦1𝑦2𝑦3…1)𝑦 = 𝑧2 and (𝑥1𝑥2𝑥3…4)2𝑥 + (𝑦1𝑦2𝑦3 …2)5𝑦 = 𝑧2 have been discussed for positive integer solutions. Here 𝑥1,𝑥2,𝑥3 … and 𝑦1,𝑦2,𝑦3 … are digits 0, 1, 2,…9. 

Keywords

Exponential, Diophantine equation and integral solution.

References

[1] Nechemia Burshtein, “On Solutions to the Diophantine Equations 5𝑥 + 103𝑦 = 𝑧2 and 5𝑥 + 11𝑦 = 𝑧2 with Positive Integers x, y, z,” Annals of Pure and Applied Mathematics, vol. 19, no. 1, pp. 75-77, 2019.
[CrossRef] [Google Scholar] [Publisher Link]
[2] Nechemia Burshtein, “On Solutions of the Diophantine Equations 𝑝3 + 𝑞3 = 𝑧2 and 𝑝3 − 𝑞3 = 𝑧2 when p, q are Primes,” Annals of Pure and Applied Mathematics, vol. 18, no. 1, pp. 51-57, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[3] Nechemia Burshtein, “A Short Note on Solutions of the Diophantine Equations 6𝑥 + 11𝑦 = 𝑧2 and 6𝑥 − 11𝑦 = 𝑧2 in Positive Integers x, y, z,” Annals of Pure and Applied Mathematics, vol. 19, no. 2, pp. 55-56, 2019.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Bjorn Poonen, “Some Diophantine Equations of the Form 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑚,” Acta Arithmetica, vol. 86, pp. 193-205, 1998.
[CrossRef] [Google Scholar] [Publisher Link]
[5] Banyat Sroysang, “On the Diophantine Equation 5𝑥 + 11𝑦 = 𝑧2,” International Journal of Pure and Applied Mathematics, vol. 89, no. 1, pp. 115-118, 2013.
[CrossRef] [Publisher Link]

Citation :

Smiti Aggarwal, Meenakshi Panchal, "On the Diophantine Equations (𝑥1𝑥2𝑥3 …6)𝑥 + (𝑦1𝑦2𝑦3 …1)𝑦 = 𝑧2 and (𝑥1𝑥2𝑥3…4)2𝑥 + (𝑦1𝑦2𝑦3 …2)5𝑦 = 𝑧2," International Journal of Mathematics Trends and Technology (IJMTT), vol. 71, no. 5, pp. 18-20, 2025. Crossref, https://doi.org/10.14445/22315373/IJMTT-V71I5P103

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved