...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 18 | Number 1 | Year 2015 | Article Id. IJMTT-V18P503 | DOI : https://doi.org/10.14445/22315373/IJMTT-V18P503

Almost Jordan Generalized Derivations in Prime Rings


Dr. D. Bharathi, V. Ganesh
Abstract

 Let R be a prime ring with char≠ 2, D(. , . ) be a symmetric bi-derivation of R, 0≠ d be trace of D (. , .) , f –(α , β )r – d be right almost Jordan generalized derivation of R, β is surjective and a ∈ R. If af(x) = 0 for all x ∈R, then a = 0 and let R be a prime ring with char R ≠ 2,3 , D (. , . , .) be permuting tri-derivation of R , 0 ≠ d be the trace of D (. , . , .). ( f– d )r be right almost Jordan generalized derivations of R. If [ f(x) , r ] = 0 for all x , r Ε R, then R is commutative ring.

Keywords
Ring , Prime ring, derivation, Jordan derivation, Generalized derivation, Jordan generalized derivation, Symmetric bi-derivation, Permuting tri-derivation, Almost Jordan generalized derivation.
References

[1] Gy. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada, 9(1987), 1303-1307.
[2] M. Bresar, Functional identities of degree two, J. Algebra, 172(3) (1995), 690-720.
[3] M.A.Ozturk and M. Sapanc_, Orthogonal symmetric bi- derivation on semi-prime gamma rings, Hacettepe Bull. Nat. Sci. Eng., 26(1997), 31-46.
[4] Gy. Maksa, A remark on symmetric bi-additive functions having nonnegative diagonalization, Glasnik Mat.-III Ser.,15(2) (1980),279- 282.
[5] D. Passman, In_nite Crossed Products, Academic Press, San Diego,(1989).
[6] W.S. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12(1969), 576-584.
[7] M.N. Daif and H.E. Bell, Remarks on derivations on semi-prime rings, Internat. J. Math. and Math. Sci., 15(1) (1992), 205-206.
[8] B. Hvala, Generalized derivation in rings, Comm. Algebra, 26(4) (1998),1147-1166.
[9] N. Arga_c and E. Alba_s, Generalized derivations of prime rings, Algebra Coll., 11(3) (2004) 399-410.
[10] K.I. Beidar, W.S. Martindale and A.V. Mikhalev, Rings with generalized identities, Marcel Dekker, Monographs and Text-Books in Pure and Applied Mathematics, New York, (1995), 195.
[11] J. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull.,27(1984), 122-126.

Citation :

Dr. D. Bharathi, V. Ganesh, "Almost Jordan Generalized Derivations in Prime Rings," International Journal of Mathematics Trends and Technology (IJMTT), vol. 18, no. 1, pp. 14-20, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V18P503

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved