Volume 25 | Number 1 | Year 2015 | Article Id. IJMTT-V25P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V25P501
S. Sekar, M. Nalini, "Analysis of the Nonlinear Singular Systems using Adomian Decomposition Method," International Journal of Mathematics Trends and Technology (IJMTT), vol. 25, no. 1, pp. 1-4, 2015. Crossref, https://doi.org/10.14445/22315373/IJMTT-V25P501
The Adomian Decomposition Method (ADM) is used to analysis the nonlinear singular systems of time-invariant and time-varying cases [14]. The obtained discrete solutions using ADM and Single-term Haar wavelet series (STHW) are compared with the exact solutions of the nonlinear singular systems of time-invariant and time-varying cases. It is found that the solution obtained using ADM is closer to the exact solutions of the nonlinear singular systems of time-invariant and time-varying cases. Error graphs for discrete and exact solutions are presented in a graphical form to highlight the efficiency of this method. This ADM can be easily implemented in a digital computer and the solution can be obtained for any length of time.
[1] G. Adomian, “Solving Frontier Problems of Physics: Decomposition method”, Kluwer, Boston, MA, 1994.
[2] J. C. Butcher, “The Numerical Methods for Ordinary Differential Equations”, 2003, John Wiley & Sons, U.K.
[3] S. L. Campbell, Singular systems of differential equations, Pitman, London, (1980).
[4] S. L. Campbell, Singular systems of differential equations II, Pitman, London. (1982).
[5] S. L. Campbell, “Bilinear nonlinear descriptor control systems”, CRSC Tech. Rept. 102386-01, Department of Mathematics, N. C. State University, Raleigh, (1987) NC 27695.
[6] S. L. Campbell and J. Rodriguez, “Non-linear singular systems and contraction mappings”, Proceedings of the American Control Conference, (1984), 1513-1519.
[7] S. L. Campbell and L. R. Petzold, “Canonical forms and solvable singular systems of differential equations”, SIAM J. Algebraic and Discrete Methods, 4, (1983), 517-521.
[8] C. H. Hsiao and W. J. Wang, “State analysis of time-varying singular nonlinear systems via Haar wavelets”, Math. Comp. Simulation, 51, (1999), 91-100.
[9] F. L. Lewis, B. C. Mertzios and W. Marszalek, “Analysis of singular bilinear systems using Walsh functions”, IEE Proc. Pt. D., 138, (1991), 89-92.
[10] F. L. Lewis, “Geometric design techniques for observers in singular systems”, Automatica, 26, (1990), 411-415.
[11] J. Y. Lin and Z. H. Yang, “Existence and uniqueness of solutions for non-linear singular (descriptor) systems”, Int. J. Systems Sci., 19, (1988), 2179-2184.
[12] S. Sekar and A. Kavitha, “Numerical Investigation of the Time Invariant Optimal Control of Singular Systems Using Adomian Decomposition Method”, Applied Mathematical Sciences, vol. 8, no. 121, pp. 6011-6018, 2014.
[13] S. Sekar and A. Kavitha, “Analysis of the linear timeinvariant Electronic Circuit using Adomian Decomposition Method”, Global Journal of Pure and Applied Mathematics, vol. 11, no. 1, pp. 10-13, 2015.
[14] S. Sekar and A. Manonmani, “A study on time-varying singular nonlinear systems via single-term Haar wavelet series”, International Review of Pure and Applied Mathematics (IRPAM), Vol. 5, No. 2, 2009, pp. 371-377.
[15] S. Sekar and M. Nalini, “Numerical Analysis of Different Second Order Systems Using Adomian Decomposition Method”, Applied Mathematical Sciences, vol. 8, no. 77, pp. 3825-3832, 2014.
[16] S. Sekar and M. Nalini, “Numerical Investigation of Higher Order Nonlinear Problem in the Calculus of Variations Using Adomian Decomposition Method”, IOSR Journal of Mathematics, vol. 11, no. 1 Ver. II, (Jan-Feb. 2015), pp. 74- 77.
[17] S. Sekar and M. Nalini, “A Study on linear time-invariant Transistor Circuit using Adomian Decomposition Method”, Global Journal of Pure and Applied Mathematics, vol. 11, no. 1, pp. 1-3, 2015.
[18] B. Sepehrian and M. Razzaghi, “Solution of time-varying singular nonlinear systems by Single-Term Walsh Series”, Math. Prob. in Engg., 3, (2003), 129-136.
[19] Wiener, N., Cybermetics, MIT Press, Cambridge, (1948).