...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 30 | Number 1 | Year 2016 | Article Id. IJMTT-V30P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V30P506

An Improved Predictor-Corrector Method for Delay Differential Equations of Fractional Order


D. Vivek, K. Kanagarajan, S.Harikrishnan
Abstract

This article provides an analysis for the delay fractional differential equations in Caputo sense by an introduction of an improved predictorcorrector formula. The delay term is expressed either as a constant or time varying. The implication of this new approach is used to improvise the algorithm. A vivid description of the convergence and detailed error analysis of the improved predictor-corrector method is clearly presented. The efficiency of the proposed method is highlighted with numerical examples.

Keywords
Fractional derivative, Delay differential equations, Predictor-Corrector algorithm.
References

[1] Benchohra. M., Henderson. J., S.K.Ntouyas and A.Ouahab.: Existence results for fractional order functional differential equations with infinite delay , Journal of Mathematical analysis, 338, 1340-1350 (2008).
[2] Butzer. P.L., Westphal. U.: An introduction to fractional calculus, in Application as of Fractional Calculus in physics, pp.1-8, World Scientific Publishing, River Edge, NJ, USA, 2000.
[3] Chen. W.C.: Nonlinear dynamics and choas in fractional-order financial system, Chaos Solutions and Fractals, 319, 1305-1314 (2008).
[4] Daftardar-Gejji. V.D., Babakhani. A.: Analysis of a system of fractional differential equations, Journal of Mathematical Analysis and Applications, 293, 2, 511-522 (2004).
[5] Davis. L.C.: Modification of the optimal velocity traffic model to include delay due to deriver reaction time, Physica A, 319, 557-567 (2002).
[6] Deng. W.H.: Numerical algorithm for the time fractional Fokker-Planck equation, Journal of Computational Physics, 227, 1510-1522 (2007).
[7] Deng. W.H.: Short memory principle and predictor corrector approach for fractional differential equations, Journal of Applied Mathematics, 206, 174-188 (2007).
[8] Diethlem. K., Ford. N.J.: Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications, 265, 229-248 (2002).
[9] Diethlem. K., Ford. N.J., Freed. A.J.: A predictor corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29, 3-22 (2002).
[10] Diethlem. K., Ford. N.J., Freed. A.D.: Detailed error analysis for a fractional Adams method, Numerical Algorithms, 36, 31-52 (2004).
[11] Diethlem. K., Ford. N.J., Freed. A.D., Luchko. Yu.: Algorithm for the fractional calculus: a selection of numerical methods, Computer Methods in Applied Mechanics and Engineering 194, 743-773 (2005).
[12] Epstein. I., Luo. Y.: Differential delay equations in chemical kinetics. Nonlinear models: the cross-shaped phase diagram and the Oregonator, Journal of Chemistry and Physics, 95, 244-254 (1991).
[13] Fridman. M., Fridman. L., Shustin. E.: Steady modes in relay control systems with time delay and periodic disturbances, Journal of Dynamical Systems, 122, 732-737 (2000).
[14] Galeone. L., Garrapa. R.: Fractional Adams-Moulton methods, Mathematics and Computers in Simulation, 79, 1358- 1367 (2008).
[15] Garrappa. R.: On some explicit Adams multistep methods for fractional differential equations, Journal of Computational and Applied Mathematics, 229, 392-399 (2009).
[16] Hashim. I., Abdulaziz. O., Momani. S.: Homotopy analysis method for fractional IVPs, Communications in Nonlinear Science and Numerical Simulation, 14, 674-684 (2009).
[17] Hilfer. R., Ed., Applications of Fractional Calculus in Physics, World Scientific Publishing, River Edge, NJ, USA, 2000.
[18] Lanusse. P., Benlaoukli. H., Nelson-Gruel. D., Oustaloup. A.: Fractional-order control and interval analysis of SISO systems with time-delayed state, IET Control Theory and Applications, 2, 16-23 (2008).
[19] Li. C., Peng. G.: Chaos in Chen’s system with a fractional order, Chaos, Solitons and Fractals, 22, 443-450 (2004).
[20] Luchko. Y., Gorenflo. R.: An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math Vietnamica, 24, 207-233 (1999).
[21] Marraba. T.A., Baleanu. D., Jarad. F.: Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, Sci.China.Ser.A, 10, 1775-1786 (2008).
[22] Miller. K.S., Ross. B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, Jonh Wiley and Sons, New York, NY, USA, 1993.
[23] Podlbny. W.: Fractional Differential Equations, 198 Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
[24] Sadia Arshad, Vasile Lupulescu, On the fractional differential equations with uncertainty, Journal of Nonlinear Analysis, 74, 3685-3693 (2011).
[25] Samko. S.K., Kilbas. A.A., Marichev. O.I.: Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
[26] Wille. D.R., Baker. C.T.H.: DELSOL-a numerical code for the solution of systems of delay-differential equations, Applied Mathematics, 9, 223-234 (1992).
[27] Zhen Wang.: A Numerical methods for delayed fractional order differential equations, Journal of Mathematics, 355-374 (2013).

Citation :

D. Vivek, K. Kanagarajan, S.Harikrishnan, "An Improved Predictor-Corrector Method for Delay Differential Equations of Fractional Order," International Journal of Mathematics Trends and Technology (IJMTT), vol. 30, no. 1, pp. 34-38, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V30P506

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved