...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 32 | Number 1 | Year 2016 | Article Id. IJMTT-V32P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V32P507

NEW GENERALIZATION OF FRACTIONAL KINETIC EQUATION USING ALEPH-FUNCTION OF TWO VARIABLES


F. Ayant
Abstract

Recently, Dutta et al [21] use the Aleph-function on one variable for solving generalized fractional kinetic equation. In this paper, the solution of a class of fractional Kinetic equation involving Aleph-function of two variables has been discussed. Special cases involving the I-function of two variables , H-function of two variables and product of two Aleph functions are also discussed. Results obtained are related to recent investigations of possible astrophysical solutions of the solar neutrino problem.

Keywords
Aleph function of two variables. I-function of two variables. H-function of two variables. Aleph-function of one variables. Fractional Kinetic equation. Laplace transform. Riemann-Liouville fractional integral.
References

[1] CNO Cycle, Report, http://en.wikipedia.org/wiki/CNO cycle, (2011).
[2] H.A. Bethe, Energy production in stars, Phys. Rev., 55(5) (1939), page 434-456, doi:10.1103/PhysRev.55.434.
[3] H.J. Haubold and A.M. Mathai, The fractional Kinetic equation and thermonuclear functions, Astrophys. Space Sci., 327(2000), page 53-63.
[4] H.M. Srivastava, K.C. Gupta and S.P. Goyal, The H -Functions of One andTwo Variables, South Asian Publishers Pvt. Ltd., New Delhi, (1982).
[5] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego,(1999).
[6] M. Sharma and R. Jain, A note on a generalized M -series as a special function of fractional calculus, Fract. Calc. Appl. Anal., 12(4) (2009), page 449-452.
[7] M. Sharma, Fractional integration and fractional differentiation of the M series, Fract. Calc. Appl. Anal., 11(2) (2008), page 187-192.
[8] N. Sudland, B. Baumann and T.F. Nonnenmacher, Who knows about theAleph -function?, Fract. Calc. Appl. Anal., 1(4) (1998), page 401-402.
[9] N. Sudland, B. Baumann and T.F. Nonnenmacher, Fractional Driftless Fokker-Planck Equation with Power Law Difusion Coefficients, in: V.G. Gangha, E.W. Mayr, W.G. Vorozhtsov (Eds.), Computer Algebra in Scientic Computing (CASC Konstanz 2001), Springer, Berlin, (2001).
[10] R.K. Saxena, A.M. Mathai and H.J. Haubold, On fractional kinetic equations, Astrophys. Space Sci., 282(2002), page 281-287.
[11] R.K. Saxena, A.M. Mathai and H.J. Haubold, On generalized fractional Kinetic Equations, Phys. A, 344(2004), page 653-664.
[12] R.K. Saxena and T.K. Pogany, On fractional integration formula for Aleph functions, Appl. Math. Comput., 218(3) (2011), page 985-990.
[13] R.K. Saxena and T.K. Pogany, Mathieu-type series for the aleph-function occuring in Fokker-Planck equation, Eur. J. Pure Appl. Math., 3(6) (2010), page 958-979.
[14] S.G. Samko, A.A Kilbas and O.L. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, (1993).
[15] C.K. Sharma and P.L. Mishra , On the I-function of two variables and its certains properties , Acta Ciencia Indica Math ,Vol 17 , ( 1991 ) page 1-4.
[16] K. Sharma , On the integral representation and applications of the generalized function of two variables , International Journal of Mathematical Engineering and Sciences , Vol 3 , issue1 ( 2014 ) , page 1-13.
[17] K. B. Oldhman and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.
[18] H. M. Srivastava and R. K. Saxena, Operators of fractional integration and their applications, Applied Mathematics and Computation 118, (2001), page 1-52.
[19] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, (1993).
[20] V. B. L. Chaurasia and D. Kumar , On the Solutions of Generalized Fractional Kinetic Equations, Adv. Studies Theor. Phys., 4(16) (2010), page 773-780.
[21] B.K. Dutta, L.K. Arora and J. Borah , On the Solution of Fractional Kinetic Equation , Gen. Math. Notes. Vol 6(1) , (2011) , page 40-48.

Citation :

F. Ayant, "NEW GENERALIZATION OF FRACTIONAL KINETIC EQUATION USING ALEPH-FUNCTION OF TWO VARIABLES," International Journal of Mathematics Trends and Technology (IJMTT), vol. 32, no. 1, pp. 38-43, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V32P507

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved