Volume 35 | Number 1 | Year 2016 | Article Id. IJMTT-V35P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V35P505
Dr. Ranjeet Singh, "Some Results in the Ring," International Journal of Mathematics Trends and Technology (IJMTT), vol. 35, no. 1, pp. 32-37, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V35P505
Let p, q and l be distinct odd primes and ( )[ ]/( 1) 2 2 n m n m p q p q R GF l x x .If n p o(l) = ( ) n p /2, (n 1) and o(l) (q )/ 2,(m 1) m q m with gcd ( ( ) n p /2, ( ) m q /2) =1, then the explicit expressions for the complete set of 8mn+4n+4m+2 primitive idempotents in the ring ( )[ ]/( 1) 2 2 n m n m p q p q R GF l x x are obtained
[1] S.K.Arora, M.Pruthi, “Minimal Cyclic Codes of prime power length”, Finite Fields Appl.3 (1997)99-113.
[2] S.K. Arora, M. Pruthi, “Minimal Cyclic Codes of length 2pn” Finite Fields Appl. 5 (1999) 177-187.
[3] Anuradha Sharma, G.K.Bakshi, V.C. Dumir, M. Raka, “Cyclotomic Numbers and Primitive idempotents in the ring GF (l) [x]/< 1 pn x >”, Finite Fields Appl. 10 (2004) 653-673.
[4] G.K.Bakshi, Madhu Raka, “Minimal cyclic codes of length pnq”, Finite Fields Appl. 9 (2003) 432-448.
[5] Ranjeet Singh, M.Pruthi, “Irreducible Quadratic Residue Cyclic Codes of Length 2pnq (n 1)” Antarctica Journal of Mathematics vol.(7) 2010.