...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 39 | Number 4 | Year 2016 | Article Id. IJMTT-V39P533 | DOI : https://doi.org/10.14445/22315373/IJMTT-V39P533

On the Stability of Affine Functional Equations in Various Spaces


Dr Meenakshi
Abstract

In this paper, we study the Hyers-Ulam-Rassias stability of the following affine functional equation on 2- Banach space, Random normed space and Intuitionistic random normed space.

Keywords
2-Banach spaces, RN-space, IRN – space, affine functional equations.
References

[1] A. White, 2-Banach spaces, Doctorial Diss., St. Louis Univ., 1968. [2] A. White, 2-Banach spaces, Math. Nachr. 42 (1969), 43–60.
[3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222–224.
[4] K. H. Park and Y. S. Jung, Stability of a cubic functional equation on Groups, Bull. Korean Math. Soc. 41 (2004), 2, 347-357.
[5] K. W. Jun and H. M. Kim, The generalized Hyers-ulam-Rassias stability of a Cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878.
[6] L. Cadariu, P. Gavruta, L. Gavruta, On the stability of functional equations,J. Nonlinear Sci. Appl. 6 (2013), 60-67.
[7] P. Gavruta, A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
[8] S. G¨ahler, 2-metrische R¨aume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115–148.
[9] S. G¨ahler, Lineare 2-normierte R¨aumen, Math. Nachr. 28 (1964), 1–43.
[10] S. G¨ahler, Uber ¨ 2-Banach-R¨aume, Math. Nachr. 42 (1969), 335–347.
[11] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.
[12] Th. M. Rassias, On the stability of the Linear mapping in Banach spaces, Procc. of the Amer. Math. Soc., 72 (1978), 2, 297-300.
[13] Th.M. Rassias, On the Stability of Functional Equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), 264–284.
[14] W.-G. Park, Approximate additive mapping in 2-Banach spaces and related topics, J. Math. Anal. Appl. 376 (2011), 193–202.
[15] A. N. Sherstnev : On the notion of a random normed space. Dpkl. Akad. Nauk SSSR 149 (1963), pp. 280-283 (in Russian).
[16] B. Schweizer and A. Sklar, Probabilistic Metric Spaces. Elsevier, North Holand (1983).
[17] C. Jung, On generalized complete metric spaces. Bull Am Math Soc. 75 (1969), pp. 113–116.
[18] D. Miheţ and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces. J Math Anal. Appl. 343(2008), pp. 567–572.
[19] D. Miheţ, The stability of the additive Cauchy functional equation in non-Archimedean fuzzy normed spaces. Fuzzy Set Syst. 161 (2010), pp. 2206–2212.
[20] O. Hadžić and E. Pap, Fixed Point Theory in PM-Spaces. Kluwer Academic, Dordrecht (2001)
[21] R. Saadati, J. Park, On the intuitionistic fuzzy topological spaces, Chaos Soliton Fract. 27(2006), pp. 331–344.
[22] S. Chang, J. Rassias and R. Saadati, The stability of the cubic functional equation in intuitionistic random normed spaces, Appl Math Mech. 31 (2010), pp. 21–26.
[23] S. Chang, Y. Cho and Y. Kang, Nonlinear Operator Theory in Probabilistic Metric Spaces. Nova Science Publishers Inc., NewYork (2001)
[24] S. Kutukcu, A. Tuna and A. Yakut, Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations. Appl Math Mech. 28 (2007) pp.799–809.
[25] G. Deschrijver, and EE. Kerre, On the relationship between some extensions of fuzzy set theory. Fuzzy Set Syst. 23 (2003), pp. 227–235.
[26] K. Atanassov, Intuitionistic fuzzy sets. Fuzzy Set Syst. 20 (1986), pp. 87–96.

Citation :

Dr Meenakshi, "On the Stability of Affine Functional Equations in Various Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 39, no. 4, pp. 252-258, 2016. Crossref, https://doi.org/10.14445/22315373/IJMTT-V39P533

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved