...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 41 | Number 1 | Year 2017 | Article Id. IJMTT-V41P501 | DOI : https://doi.org/10.14445/22315373/IJMTT-V41P501

Spectral Methods for Volterra Integral Equations


Mahesh Boda, V. Dharmaiah
Abstract

The purpose of this paper is to introduce a novel numerical method called a legedre-collocation method to solve the Volterra integral equations of second kind. We also provide error analysis for the proposed method, which indicates that the numerical errors decay exponentially provided that the kernel function and the source function are sufficiently smooth. Numerical results confirm theoretical prediction of the exponential rate of convergence.

Keywords
Volterra integral equations of the second kind, Legendre-collocation method Convergence analysis.
References

[1] B.Guo and L.Wang, Jacobi, Interpolation Approximations and their Applications to Singular Differential Equations, Adv. Comput. Math., 14(2001), 227-276.
[2] C.Canuto, M.Y. Hussaini, A.Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag 2006.
[3] C.K.Qu, and R.Wong, Szego’s Conjecture on Lebesgue Constants for Legendre Series, Pacific J. Math, 135 (1988), 157 -188.
[4] G.N. Elnagar and M.Kazemi, Chebyshev, Spectral Solution of Nonlinear Volterra-Hammerstein Integral Equations, J.Comput. Appl. Math., 76(1996), 147 -158.
[5] H.Brunner, Collocation Methods for Volterra Integral and Related Functional Equations Methods, Cambridge University Press 2004.
[6] H-C. Tian, Spectral-Method for Volterra Integral Equation, MSc Thesis, Simon Fraser University 1995.
[7] H. Fujiwara, High-Accurate Numerical Method for Integral Equations of the First Kind under Multiple-Precision Arithmetic, Preprint, RIMS, Kyoto University, 2006.
[8] H.Brunner , J.P.Kauthen, The Numerical Solution of Two-dimensional Volterra Integral Equation, IMA J.Numer. Anal., 9(1989), 45-59.
[9] H.Brunner and T.Tang. Polynomial Spline Collocation Methods for the Nonlinear Basset Equation, Comput. Math . Appl., 18 (1989), 449-457.
[10] L.M. Delves, J.L. Mohammed, Computational Methods for Integral Equations, Cambridge University Press 1985.

Citation :

Mahesh Boda, V. Dharmaiah, "Spectral Methods for Volterra Integral Equations," International Journal of Mathematics Trends and Technology (IJMTT), vol. 41, no. 1, pp. 1-8, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V41P501

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved