...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 41 | Number 2 | Year 2017 | Article Id. IJMTT-V41P520 | DOI : https://doi.org/10.14445/22315373/IJMTT-V41P520

A new strong convergence Theorem for Lipschitzian strongly pseudocontractive Mappings in a real Banach space


Ashish Nandal, Renu Chugh
Abstract

In this paper we prove the strong convergence of a new iteration scheme to a common fixed point of a finite family of Lipschitz strongly pseudocontractive mappings in a real Banach space. Result proved in this paper represents an extension and refinement of the previously known results in this area.

Keywords
Iteration scheme, strongly pseudocontractive maps, L- Lipschitzian maps, Banach spaces.
References

[1] C. E. Chidume, Approximation of fixed points of strongly pseudo-contractive mappings, Proc. Amer. Math. Soc. 120 (1994), 545-551.
[2] C.E. Chidume, Convergence theorems for strongly pseudocontractive and strongly accretive nonlinear maps, J. Math. Anal. Appl. 228.
(1998),254-264.
[3] A. Rafiq, Modified Noor iterations for nonlinear equations in Banach spaces, Applied Mathematics and Computation 182 (2006), 589-595.
[4] M. A . Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000),217-229.
[5] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953),506-510.
[6] V. Berinde, Iterative Approximation of Fixed Points , Springer, Berlin (2007).
[7] N. Hussain, R. Chugh, V. Kumar, A. Rafiq, On the rate of convergence of Kirk-type iterative schemes. J. Appl. Math. 2012, Article ID 526503 (2012)
[8] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 149 (1974),147-150.
[9] B.E. Rhoades, S.M. S¸oltuz, The equivalence between Mann-Ishikawa iterations and multistep iteration, Nonlinear Analysis, 58(2004), 219-228.
[10] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 18/19(1967), 508-520.
[11] R. Chugh, V. Kumar, Convergence of SP iterative scheme with mixed errors for accretive Lipschitzian and strongly accretive Lipschitzian operators in Banach space. Int. J. Comput. Math. (2013).


Citation :

Ashish Nandal, Renu Chugh, "A new strong convergence Theorem for Lipschitzian strongly pseudocontractive Mappings in a real Banach space," International Journal of Mathematics Trends and Technology (IJMTT), vol. 41, no. 2, pp. 205-209, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V41P520

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved