...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 47 | Number 3 | Year 2017 | Article Id. IJMTT-V47P530 | DOI : https://doi.org/10.14445/22315373/IJMTT-V47P530

A Short Review on Prime Number Theorem


Anuja Ray Chaudhuri
Abstract

Prime number theorem is a well known theorem in Mathematics, specially in Number Theory which describes the asymptotic distribution of prime numbers. One of the remarkable discovery regarding this topic is Riemann Hypothesis. Since a long period several renowned mathematicians are trying to prove or disprove this hypothesis and to reduce the error bound of the asymptotic distribution of prime counting function.

Keywords
Prime Number Theorem, Riemann Hypothesis, asymptotic approximation, prime counting function, Scale invariant infinitesimals.
References

1. Apstol, Tom. M , Introduction to analytic number theory, Undergraduate Texts in Mathematics, NewYorkHeidelberg: Springer-Verlag, (1976), 7.
 2. H.M.Edwards, Riemannโ€Ÿs Zeta function, Dover Publications, New York, (2001).
3. C.F.Gauss, Werke, 2nd ed., Koniglichen Gesellschaft der Wissenschaften, Gottingen, (1876)
4. G.H.Hardy, Prime numbers, British Association Report, British Association, Manchester,Vol.2 (1915) ,pp-350- 354.
5. P.L.Chebysev, La totalite des nombres premiers infericurs a uni limite done, J.Math.Pures Appl. 17 (1852) ,pp-341-365.
6. George E.Andrews, Number theory, W.B.Saunders Co., Philadelphia, 1971 (Reprinted by Dover, NewYork,1994).
7. B.Riemann,Ueber die Anzahl der primzahlen under liner gegebenen Grosse, Monatsberichte der Berliner Akademic (1859), 671-680.
8. J.Hadamard, Sur la distribution des zeros de la fonction ๐œ(๐‘ ) et ses consequences arithmetiques, Bull.Soc.Math.France 14 (1896), 199-220.
9. Charles-Jean de la V Poussin, Recherches analytiques sur la theorie des numbers; Premiere particle; la fonction ๐œ(๐‘ ) de Riemann et les numbers.
10. J.E.Littlewood, Sur la distribution des numbers premiers, C.R.Acad.Sci, Paris 158 (1914), 263-266.
11. S.Skewes, on the difference ๐›ฑ ๐‘ฅ โˆ’ ๐ฟ๐‘–(๐‘ฅ), Jour.London.Math.Soc.8 (1933),277-283.
12. S.Skewes, on the difference ๐›ฑ ๐‘ฅ โˆ’ ๐ฟ๐‘–(๐‘ฅ), Proc.London.Math.Soc.5 (1955),48-70.
13. A.S.Lehman, on the difference ๐›ฑ ๐‘ฅ โˆ’ ๐ฟ๐‘–(๐‘ฅ), Acta Arithmetica 11 (1966),397-410.
14. Human J.J.te Riele, On the sign of the difference ๐›ฑ ๐‘ฅ โˆ’ ๐ฟ๐‘–(๐‘ฅ), Mathematics of computation 48(1987), 323-328.
15. B.C.Bredt and Robert A.Rankin, Ramanujan Letters and Commentary, Amer.Math.Soc. and London Math.Soc,Providence, Rhode Island, 1995.
16. H.Von Mangoldt, Zu Riemannโ€Ÿs Abhandlung โ€ž Ueber die Anzahl der primzahlen unter einer gegebenes Grosseโ€Ÿ ,J.Reine Angrew.Math.114 (1895), 255-305.
17. D.P.Datta and A.Ray Chaudhuri, Scale free analysis and prime number theorem, Fractals, 18,(2010), 171-184.
18. A. Ray Chaudhuri, Scale Invariant Limit and Emergence of Complexity: Applications to Traffic Flow, International Journal of Mathematics Trends and Technology, Vol. 19, Issue 2 (2015) 102 โ€“ 107. ISSN: 2231-5373.

Citation :

Anuja Ray Chaudhuri, "A Short Review on Prime Number Theorem," International Journal of Mathematics Trends and Technology (IJMTT), vol. 47, no. 3, pp. 225-229, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V47P530

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright ยฉ 2025 Seventh Sense Research Groupยฎ . All Rights Reserved