...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 49 | Number 2 | Year 2017 | Article Id. IJMTT-V49P514 | DOI : https://doi.org/10.14445/22315373/IJMTT-V49P514

Study of a Generating Function Involving Generalised Lauricella Function


Ekta Mittal, Sunil Joshi,Rupakshi Mishra Pandey
Abstract

Recently, Generating function of the extended second Appllehypergeometricfunction was introduced by S. D.Purohit, R.K.Parmar and K.S. Nishar, here in the present investigations we established some generating functions involving generalised extendedLauricellafunction F a b b b c c c x x x p A n n n  , , ,..., ; , ,..., ; , ,..., ; ; 1 2 1 2 1 2  . Further we develop some certain interesting special cases

Keywords
Extended Beta function, extended hypergeometric function, Lauricella function.
References

[1] M. A. Chaudhry, S. M. Zubair, Generalized incomplete gamma functions with applications,J. Comput. Appl. Math. 55 (1994), 99–124.
[2] M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler’s beta function, J. Compt. Appl. Math. 78 (1997), 19–32.
[3] M. A. Chaudhry, A. Qadir, H. M. Srivastava, R. B. Paris, Extended hypergeometric and confluent hypergeometric function, Appl. Math. Comput. 159 (2004),589–602.
[4] M.A. Chaudhry, S.M. Zubair, On a Class of Incomplete Gamma Functions with Applications, CRC Press (Chapman and Hall), Boca Raton, FL, 2002.
[5] M. A. Chaudhry, S. M. Zubair, Extended incomplete gamma functions with applications,J. Math. Anal. Appl. 274 (2002), 725–745.
[6] E. Ӧzergin, M.A. Ӧzarslan , A. Altin, Extension of gamma, beta and hypergeometric function, Journal of Computational and Applied Mathematics, 235 (16),(2011), 4601–4610.
[7] M.A. Ӧzarslan, E. Ӧzergin, Some generating relations for extended hypergeometric function via generalized fractional derivative operator. Math. Comput. Model. 2010, 52, 1825–1833.
[8] E.D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted By Chelsea Publishing Company, Bronx, New York, 1971.
[9] D. M. Lee , A. K. Rathie, R. K. Parmar, Y. S. Kim, Generalization of ExtendedBeta Function, Hypergeometric and Confluent Hypergeometric Functions, Honam Mathematical Journal 33 (2) (2011), 187–206.
[10] R.K.Parmar, S.D.Purohit, K.s.Nisar, M.Aldaifallah, On a Generating function involving generalized second Appellfunction,Journal of Science and Arts,3(32)(2015),225-228.

Citation :

Ekta Mittal, Sunil Joshi,Rupakshi Mishra Pandey, "Study of a Generating Function Involving Generalised Lauricella Function," International Journal of Mathematics Trends and Technology (IJMTT), vol. 49, no. 2, pp. 119-124, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V49P514

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved