...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 49 | Number 4 | Year 2017 | Article Id. IJMTT-V49P539 | DOI : https://doi.org/10.14445/22315373/IJMTT-V49P539

Secure Complementary Tree Domination Number of a Graph


S.E.Annie Jasmine, K.AmeenalBibi
Abstract

Let G be a nontrivial connected graph, a secure dominating set D of V is said to be a secure complementary tree dominating set if the induced subgraph < V – D > is a tree. A secure complementary tree dominating sets of the graph G, having minimum cardinality is called the secure complementary tree domination number denoted by γsctd of G. We have determined the exact values of secure complementary tree domination number for some standard graphs and obtained bounds for this new parameter. NORDHAUS – GADDUM type results are attained .The relationship of this parameter with other graph theoretical parameters are also discussed.

Keywords
Domination number, Secure domination number, Complementary tree dominating set, Secure Complementary tree dominating set, Secure Complementary tree domination number.
References

1. Cokayne E.J. and HedetniemiS.T.(1980): Total domination in graphs. Networks, Vol.10:211-219
2. John Adrian Bondy, Murty U.S.R, G.T, springer, 2008.
3. A.P Burger, M.A Henning, and J.H. Yan vuren : Vertex cover and secure Domination is Graphs, Questions Mathematicae, 31:2(2008) 163- 171.
4. E.Castillans, R.A Ugbinada and S Caney Jr.,secure Domination in the Jain Graphs, Applied Mathematical sciences, Applied Mathematical Science 8(105),5203-5211.
5. E.J Cockayne, O.Favaran, and C.M. Mynhardt secure Domination, weak Romen Domiation and Forbidden subgraphs, Bull Inst. Combin.Appl., 39(2003), 87-100. 6. E.J Cockayne, Irredendance, secure domination & Maximum degree in tree, Discrete math, 307(2007)12-17.
7. Nordhaus E. A. and Gaddum J.W.(1956): On complementary graphs, Amer. Math. Monthly, 63: 175-177.
8. Sampathkumar, E.;Wailkar, HB (1979): The connected domination number of a graph, J Math. Phys. Sci 13(6): 607-613.
9. S.Muthammai and M.Bhanumathi,(2011):Complementary Tree Domination Number of a Graph .IMF, vol. 6, 1273-1282.
10. V.R.Kulli and B. Janakiram (1996):The Non- Split Domination Number of a Graph. Indian J. pure appl. Math.,27(6) , 537-542.
11. Mahedavan G., SelvamA,N.Ramesh., Subramaian.T.,(2013): Triple Connected complementary tree domination number of a graph. IMF , vol.8, 659-670.
12. T.W Haynes , S.T. Hedetniemi and P.J Slater, Fundamentals of domination in graphs, Marcel Dekker Inc., New York(1998).
13. T.W Haynes, Stephen T, Hedetniemi and Peter S sloter, domination in graphs. Advanced Topics, Marcel Dekker, New York, 1990

Citation :

S.E.Annie Jasmine, K.AmeenalBibi, "Secure Complementary Tree Domination Number of a Graph," International Journal of Mathematics Trends and Technology (IJMTT), vol. 49, no. 4, pp. 260-264, 2017. Crossref, https://doi.org/10.14445/22315373/IJMTT-V49P539

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved