Volume 55 | Number 8 | Year 2018 | Article Id. IJMTT-V55P576 | DOI : https://doi.org/10.14445/22315373/IJMTT-V55P576
Asma Ali, Kapil Kumar, MD Hamidur Rahaman, "A Note on Generalized Skew Derivations on Rings," International Journal of Mathematics Trends and Technology (IJMTT), vol. 55, no. 8, pp. 593-602, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V55P576
In this article we investigate the structure of a ring R with involution of second kind admitting a generalized skew-derivation G satisfying one of the following
(i) G([x,x*])+[x,x*]ϵZ(R)
(ii) G(xᵒx*)ϵZ(R)
(iii) G([x,x*]) xᵒx*ϵZ(R)
(iv) G (xᵒx*) xᵒx*ϵZ(R)
(v) G (xᵒx*) [ x,x*]ϵZ(R)
for all xϵR.
[1] J.C. Chang, “On identity h(x)=af(x)+g(x)b” Taiwanese J. Math. vol. 7, pp.103-113, 2003.
[2] J.C. Chang, “Generalized skew derivations with annihilating Engel conditions” Taiwanese J. Math. vol.7,pp.103-113, 2008.
[3] J.C. Chang , “Generalized skew derivations with nilpotent values on Lie ideals” Monatsh. Math. vol. 161, pp.155-160, 2010.
[4] H.W. Cheng and F. Wei “Generalized skew derivationson rings” Adv. Math. (China) vol. 35,pp. 237-243 2006.
[5] T.K. Lee, “Generalized skew derivations characterized by acting on zero products” Pacific J. Math. vol. 216, pp. 293-301, 2004.
[6] M.N.Daif and H.E. Bell “Remarks on derivations on semiprime rings” Intern. J. Math. Math. Sci. vol. 15(1), pp. 205-206 ,1992.
[7] V.De.Filippise and S.Huang”Generalized derivations on semiprime rings” Bull. Korean Math. Soc. vol.48(6), pp.1253-1259, 2011.
[8] M.N.Daif and H.E.Bell “On derivations and commutativity in prime rings”Acta math. Hunger vol.66, pp. 205-206, 1995.
[9] I.N.Herstein”A note on derivations” Canad. Math. Bull. vol. 21,pp. 369-370 1978.