...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 5 | Number 1 | Year 2014 | Article Id. IJMTT-V5P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V5P515

Higher Six Dimensional Plane Gravitational Waves In Bimetric Relativity


V.Mahurpawar
Abstract

In this paper, I studied the type plane gravitation waves for higher six dimensions and it will observed that the result for vacuum space and for matter cosmic strings respectively.

Keywords
Plane gravitation, Cosmic strings, Bimetric Relativity.
References

[1] H. Bondi,; F.A. E.  Pirani, and I. Robinson, (1959). Gravitational waves in general relativity III. Exact plane waves.Proc.Roy.Soc.Lond.A23, 25,519-533.
[2]    Donato, Bini, et al(2003). Test particle motion in     gravitational plane wave collision background. Class. Quantum Grav., 20,341.
[3]  Einstein, Albert.(1916) Die Grundlage der allgemeinen
Relativitatstheorie. Annanlender Physik ,49.
[4]  N.N. Ghosh, (1955). On the solution of r’s for atype of non-symmetric field              . Prog.Theo.Phys., 13,No.6,587-593.
[5]   N.N.  Ghosh. (1956). On a solution of field equations in Einstein unified field theory I. Porg.Theo. Phys., 16, No.5, 421-428.
[6]  N.N. Ghosh. (1957). On a solution of field equations in Einstein unified field theory II. Porg.Theo. Phys., 17, No.2, 131-138.
[7] P.A.  Hogan, (199). Gravitational waves and Bertotti-Robinson space- time. Math. Proc. Roy. Irish Acad. 99A, 51-55.
[8] M. Ikeda, (1952). On the approximate solutions of the unified field theory of Einstein and Schrodinger. Prog.Theo. Phys.07,127-128.
[9] M. Ikeda, (1954). On static solutions of Einstein’s generalized theory of gravitation I. Prog.Theo. Phys. ,12,17-30.
[10] M. Ikeda, (1955). On static solutions of Einstein’s generalized theory
of gravitation II. ProgTheo Phys.,13, 266-275.
[11] S.  Kessari, , D. Singh, et al,(2002). Scattering of spinning test particles by plane gravitational and electromagnetic waves. gr- qc/0203038,Class. Quant. Grav. 19  4943-4952.
[12] K. B. Lal; N. Ali, (1970a). Wave solutions of the field equations of general relativityin ageneralized Takno space-time.  Tensor N.S.,21,134-
137.
[13] K. B. Lal; N.Ali, (1970b). Plane wave solutions of Einstein’s unified
field theories space-time. Tensor N.S.,21,349-353.
[14] K. B. Lal; Shafiullah (1980). On plane wave solutions of non- symmetricfield equations of unified theories of Einstein Bonnar and Schrodinger. Annali de mathematica ed Pure Applicata., 126,285-298.
[15]  Lu Hui quing (1988). Plane gravitational waves under a non-zero cosmological constant. Chi. Astronomy and astrophys. 12, 186-190.
[16] N.V. Mitskievic and Pandey, S.N. (1980). On the motion of test particle in the field of a plane gravitational wave. Gen. Rela. Grav., Vol.
12, No.7,581-583.
[17]  M.Mohseni; Tucker, R.W.; Wang, C. (2001). On the motion of spinning test particles in plane gravitational waves. Class. Quant. Grav.,
18 3007-3017
[18] M. Mohseni; H.R. Sepangi, (2008). Gravitational waves and spinning test particles. gr-qu/0009070, Class. Quant. Grav. 17 4615-4625.
[19] S.N.  Pandey (1979). Plane wave solutions in Finzi’s non-symmetric unified field theory. Theo. Math. Phys. 39, 371-375.
[20] H. Takeno (1958a). A comparison of plane wave solutions in general relativity with those in non-symmetric theory. Prog. Theo. Phys. 20, 267-
276.
[21] H. Takeno (1958b). on some generalized plane waves solutions of non-symmetric unified field theories II. Tensor N. S., 8, 71-78.
[22] H. Takeno 1961). The mathematical theory of plane gravitational waves in general relativity. A Scientific Report of  The Research Institute for The Theoretical  Physics Hiroshima University, Japan.
[23]  C.G.Torre (2006). Gravitational waves- Just   plane symmetry. Gen. Rela. Grav.38, 653-662.

Citation :

V.Mahurpawar, "Higher Six Dimensional Plane Gravitational Waves In Bimetric Relativity," International Journal of Mathematics Trends and Technology (IJMTT), vol. 5, no. 1, pp. 22-26, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V5P515

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved