...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 65 | Issue 6 | Year 2019 | Article Id. IJMTT-V65I6P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I6P502

Bayesian Shrinkage estimators of the multivariate normal distribution


Mutwiri Robert Mathenge
Abstract

This paper compares two shrinkage estimators of rates based on Bayesian methods. We estimate the mean ฮธ of the multivariate normal distribution in ๐•ฝ๐’‘ , when ๐ˆ ๐Ÿ is unknown using the chi-square random variable. The Modified Bayes estimator ๐œน๐‘ฉ โˆ— and the Empirical Bayes estimator ๐œน๐‘ฌ๐‘ฉ โˆ— are considered and the limits of their risk ratios of the maximum likelihood estimator when n and p tend to infinity are obtained.

Keywords
Bayes estimator, Empirical Bayes estimator, James-Stein estimator , Multivariate Gaussian random variable, Modified Bayes estimator, Shrinkage estimator.
References

[1] Baranchik, A.J., 1964. Multiple regression and estimation of the mean of a multivariate normal distribution. Stanford Univ. Technical Report.
[2] Benmansour, D. and Hamdaoui, A., 2011. Limit of the Ratio of Risks of James-Stein Estimators with Unknown Variance. Far East J. Theorical Stat., 36: 31-53. https://www.statindex.org/articles/257944.
[3] Benmansour, D. and Mourid, T., 2007. Etude dโ€™une classe dโ€™estimateurs avec rรฉtrรฉcisseur de la moyenne dโ€™une loi gaussienne. Annales de l.ISUP, Fascicule, 51: 1-2.
[4] Brandwein A.C. and Strawderman, W.E. Stein Estimation for Spheri-cally Symmetric Distributions : Recent Developments, Statistical Science, 27(1), 2012, 11-23.
[5] Casella, G. and Hwang, J.T., 1982. Limit expressions for the risk of James-Stein estimators. Canadian J. Stat., 10: 305-309. DOI: 10.2307/3556196
[6] Fourdrinier, D., Ouassou I. and Strawderman, W.E. 2008. Estimation of a mean vector under quartic loss. J. Stat. Plann. Inference, 138: 3841-3857. DOI: 10.1016/j.jspi.2008.02.009
[7] Hamdaoui, A. and Benmansour, D., 2015. Asymptotic properties of risks ratios of shrinkage estimators. Hacettepe J. Math. Stat., 44: 1181-1195. DOI: 10.15672/HJMS.2014377624.
[8] Karamikabir, H., Afshari, M., & Arashi, M., 2018. Shrinkage estimation of non-negative mean vector with unknown covariance under balance loss. Journal of inequalities and applications, 2018(1), 331. doi:10.1186/s13660-018-1919-0
[9] Hamdaoui, A. and Mezouar, N., 2017. Risks Ratios of shrinkage estimators for the multivariate normal mean. Journal of Mathematics and Statistics, Science Publication., 13(2): 77-87. DOI: 10.3844/jmssp.2017.77.87.
[10] James, W. and Stein, C., 1961. Estimation of quadratique loss.
[11] Proceedings of the 4th Berkeley Symp., Math. Statist. Prob., (MSPโ€™ 61), Univ of California Press, Berkeley, pp: 361 -379.
[12] Lindley, D. V. And Smith A. F. M. Bayes estimates for the linear model (with discussion). J. Roy. Statist. Soc. B 34, 1-41, (1972).
[13] Maruyama, Y., 2014. lp-norm based James-Stein estimation with minimaxity and sparsity. Statistics Theory (math.ST) arXiv.
[14] Stein, C., 1956. Inadmissibilty of the usual estimator for the mean of a multivariate normal distribution. Proceedings of the 3th Berkeley Symp., Math. Statist. Prob., (MSPโ€™ 56), Univ. of California Press, Berkeley, pp: 197-206.
[15] Stein, C., 1981. Estimation of the mean of a multivariate normal distribution. Ann. Stat., 9: 1135-1151. DOI: 10.1214/aos/1176345632A.C.
[16] Sun, L., 1995. Risk ratio and minimaxity in estimating the multivariate normal mean with unknown Scandinavian J. Stat., 22: 105-120.

Citation :

Mutwiri Robert Mathenge, "Bayesian Shrinkage estimators of the multivariate normal distribution," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 6, pp. 6-14, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I6P502

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright ยฉ 2025 Seventh Sense Research Groupยฎ . All Rights Reserved