...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 66 | Issue 10 | Year 2020 | Article Id. IJMTT-V66I10P513 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I10P513

Relation between Lah matrix and k-Fibonacci Matrix


Irda Melina Zet, Sri Gemawati, Kartini Kartini
Abstract

The Lah matrix is represented by ๐ฟ๐‘›, is a matrix where each entry is Lah number. Lah number is count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets. k-Fibonacci matrix, ๐น๐‘› (๐‘˜) is a matrix which all the entries are k-Fibonacci numbers. k-Fibonacci numbers are consist of the first term being 0, the second term being 1 and the next term depends on a natural number k. In this paper, a new matrix is defined namely ๐ด๐‘› where it is not commutative to multiplicity of two matrices, so that another matrix ๐ต๐‘› is defined such that ๐ด๐‘› โ‰  ๐ต๐‘›. The result is two forms of factorization from those matrices. In addition, the properties of the relation of Lah matrix and kFibonacci matrix is yielded as well.

Keywords
Lah numbers, Lah matrix, k-Fibonacci numbers, k-Fibonacci matrix.
References

[1] J. Engbers, D. Galvin, and C. Smyth, Restricted Stirling and Lah number matrices and their inverses, Journal of Combinatorial Theory Series A, 161 (2017), 1-26.
[2] S. Falcon, The k-Fibonacci matrix and the Pascal matrix, Central European Journal of Mathematics, 9 (6), 2011, 1403โ€“1410.
[3] S. Falcon and A. Plaza, k-Fibonacci sequences modulo m, Chaos Solitons & Fractals, 41 (2009), 497-504.
[4] S. Falcon and A. Plaza, On the Fibonacci k-numbers, Chaos Solitons & Fractals, 32 (2007), 1615-1624.
[5] B. Guo and F. Qi, Six Proofs for an Identity of the Lah Numbers, Online Journal of Analytic Combinatorics, 10 (2015), 1-5.
[6] V. E. Hoggat, Fibonacci and Lucas Numbers, Houghtonโ€“Mifflin, Palo Alto, CA., 1969.
[7] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley Interscience, New York, 2001.
[8] G. Y. Lee and J. S. Kim, The linear algebra of the k-Fibonacci matrix, Linear Algebra and its Applications, Elsevier, 373 (2003), 75โ€“ 87.
[9] I. Martinjak, Lah Number and Lindstromโ€™s Lemma, Comptes Rendus Mathematique, 356(2017), 1-4.
[10] Mawaddaturrohmah and S. Gemawati, Relationship of Bellโ€™s Polynomial Matrix and k-Fibonacci Matrix, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 65(2020), 29-38.
[11] R. Munir, Metode Numerik, Informatika : Bandung, 2008.
[12] G. P. S. Rathore, A. A Wani, and K. Sisodiya, Matrix Representation of Generalized k-Fibonacci Sequence, OSR Journal of Mathematics, 12 (2016), 67โ€“72.
[13] T. Wahyuni, S. Gemawati, and Syamsudhuha, On some Identities of k-Fibonacci Sequences Modulo Ring z6 and z10, Applied Mathematical Sciences, 12(2018), 441-448.

Citation :

Irda Melina Zet, Sri Gemawati, Kartini Kartini, "Relation between Lah matrix and k-Fibonacci Matrix," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 10, pp. 116-122, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I10P513

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright ยฉ 2025 Seventh Sense Research Groupยฎ . All Rights Reserved