...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 66 | Issue 1 | Year 2020 | Article Id. IJMTT-V66I1P522 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I1P522

Approximation of Phillips-operators on new parameters and via Dunkl analogue


Ravi Kumar, Md. Nasiruzzaman
Abstract

The present article is to study the convergence properties of Lebesgue measurable functions based on Dunkl Analogue. We construct a new modi ed version of Phillips-operators by introducing the new parameters α, β and υ. To obtain the results of uniform convergence in a better way of the Phillips-operators we calculate the qualitative results in a Korovkin and weighted Korovkin spaces.

Keywords
Szasz operator; generating functions; Dunkl analogue; exponential function via Dunkl analogue; Korovkin and weighted Korovkin spaces; modulus of continuity; order of convergence.
References

[1] A. Alotaibi, M. Nasiruzzaman, M. Mursaleen, A Dunkl type generalization of Sz´asz operators via post-quantum calculus, J. Inequal. Appl., 2018, Article ID: 287 (2018)
[2] C¸ . Atakut, N. Ispir, Approximation by modified Sz´asz-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., 112, 2002, 571–578.
[3] S.N. Bernstein, D´emonstration du th´eor´eme de Weierstrass fond´ee sur le calcul des probabilit´es, Commun. Soc. Math. Kharkow., 2(13), 1912, 1–2.
[4] A. Ciupa, A class of integral Favard-Sz´asz type operators, Stud. Univ. Babe¸s-Bolyai, Math., 40(1), 1995, 39–47.
[5] A. Gadˇziev, A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P.P. Korovkin’s theorem. Dokl. Akad. Nauk SSSR 218, 1974(Russian), 1001-–1004.
[6] G. ˙I¸c¯oz, B.C¸ ekim, Stancu type generalization of Dunkl analogue of Sz´asz-Kamtrovich operators, Math. Meth. Appl. Sci., 39(7), 2016, 1803–1810. [7] G. ˙I¸c¯oz, B.C¸ ekim, Dunkl generalization of Sz´asz operators via q-calculus, Jour. Ineq. Appl.,284, (2015)
[8] U. Kadak, Weighted statistical convergence based on generalized difference operator involving (p, q)-Gamma function and its applications to approximation theorems, Journal of Mathematical Analysis and Applications, vol. 448(2), 2017, 1633–1650.
[9] M. Mursaleen, K.J. Ansari, A. Khan, On (p, q)-analogue of Bernstein operators, Appl. Math. Comput. 266, 2015, 874–882.
[10] M. Mursaleen, S. Rahman, Dunkl Generalization of q-Sz´asz-Mirakjan Operators which Preserve x 2 , Filomat 32(3), 2018, 733—747.
[11] M. Mursaleen, S. Rahman, A. Alotaibi, Dunkl generalization of q-Sz´asz-Mirakjan Kantorovich operators which preserve some test functions, Journal of Inequalities and Applications 2016:317, (2016)
[12] M. Mursaleen, A. Khan, Statistical approximation properties of modified q-Stancu-beta operators. Bull. Malays. Math. Sci. Soc. 36(3), 2013, 683—690. [13] M. Mursaleen, A. Khan, Generalized q-Bernstein-Schurer operators and some approximation theorems, J. Funct. Spaces Appl. Art. ID 719,834, 7 (2013)
[14] S.A. Mohiuddine, T. Acar, A. Alotaibi, Durrmeyer type (p, q)-Baskakov operators preserving linear functions, J. Math. Inequal. 12(4), 2018, 961–973. [15] M. Nasiruzzaman, N. Rao, A generalized Dunkl type modifications of Phillips operators, Journal of Inequalities and Applications, 2018:323, (2018) [16] M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Approximation results on Dunkl generalization of Phillips operators via q-calculus, Advances in Difference Equations, 2019 244 (2019)
[17] M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, A Dunkl–Type Generalization of Sz´aszKantorovich Operators via Post-Quantum Calculus, Symmetry, 11, 232 (2019)
[18] R.S. Phillips, An inversion formula for semi groups of linear operators, Ann. Math. 59, 1954, 352—356.
[19] N. Rao, A. Wafi, A.M. Acu, q -Sz´asz-Durrmeyer type operators based on Dunkl analogue, Complex Anal. Oper. Theory. doi.org
[20] M. Rosenblum, Generalized Hermite polynomials and the Bose-like oscillator calculus, Oper. Theory, Adv. Appl., 73, 1994, 369–396.
[21] O. Sz´asz, Generalization of S. Bernstein’s polynomials to the infinite interval, J. Res. Natl. Bur. Stand., 45, 1950, 239–245. [22] S. Sucu, Dunkl analogue of Sz´asz operators, Appl. Math. Comput., 244, 2014, 42–48.
[23] N. Rao, A. Wafi, A.M, Acu, q -Sz´asz-Durrmeyer type operators based on Dunkl analogue, Complex Anal. Oper. Theory, 13(3) (2019), 915-–934

Citation :

Ravi Kumar, Md. Nasiruzzaman, "Approximation of Phillips-operators on new parameters and via Dunkl analogue," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 1, pp. 175-187, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I1P522

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved