Volume 66 | Issue 1 | Year 2020 | Article Id. IJMTT-V66I1P528 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I1P528
B.Kokila, N.Mythili, S.Sravanthi, "Different Types of Orthogonalities In Functional Analysis," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 1, pp. 220-224, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I1P528
Orthogonality is the generalization of the notion of perpendicularity to the linear algebra of bilinear forms. Two elements of x and y of a vector space with bilinear form B are Orthogonal when B
[1] Ahkiezer, N.I., the classical moment problem, Hafner, new york, N.Y., (1965)
[2] Askey, R., Ismail, M.E.H., Recurrence relations, continued fractions and Orthogonal polynomials, memoirs amer, math., soc ., 300(1984)
[3] Birikhoff, G.(1935) Orthogonality in linear metric spaces, duke math.J. (1), 169-172
[4] Bustoz, J., Ismail, M.E.H., the associated ultra-spherical polynomials and their q-analogous, candian journal of math. 34(1982)
[5] Conway J 1990 a course in functional analysis new york: springer – verlag
[6] Diestel, joseph(1943), sequences and series in Banach spaces, new york, springer – verlag
[7] James, R. C.(1945), Orthogonality in normal linear spaces, duke math. J. (12), 291-302
[8] Khalil, R. and alkhawalda, A, university of Jordan department of mathematics,
[9] Khalil, R.(1990) Orthogonality in Banach spaces math. J, of toyama university(13), 185-205
[10] L.Debnath, F.A. Shah, wavelet transformation and their application Jairo a. charris and luis a. gomez
[11] Saidi, F. (2002), characterization of Orthoganality in certain Banach spaces, bull. Austral. Math. Soc. (65), 93-104
[12] Singer, I.(1970), Bases in Banach spaces, springer-verlog, new york
[13] Szego, G., Orthogonal polynomials, amer. Math. Soc. Colloquium publications, vol. XXII, 4th ed., providence., R.I., 1975