...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 66 | Issue 4 | Year 2020 | Article Id. IJMTT-V66I4P515 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I4P515

A FAMILY OF LOGARITHMIC ESTIMATORS FOR POPULATION VARIANCE UNDER DOUBLE SAMPLING


Chandni Kumari, Ratan Kumar Thakur
Abstract

In this paper, an improved estimator for variance has been proposed to improvise the log-type estimators proposed by Kumari (2019). These classes of estimators provide a better alternative to the classes of estimators provided by Kumari (2019) as well as to some other commonly used estimators available in literature. A numerical study is included to support the use of the suggested classes of estimators.

Keywords
Population variance, Logarithmic
References

[1] Bhushan, S. and Kumari, C. (2018). A new log type estimators for estimating the popu- lation variance, International Journal of Computational and Applied Mathematics (ISSN 1819-4966), 13 (1), 43-54.
[2] Bhushan, S. and Kumari, C. (2018). A Class of Double Sampling Log-Type Estimators for Population Variance Using Two Auxiliary Variable, International Journal of Applied Engineering Research, Volume 13, Number (13) 2018, pg 11151-11155.
[3] Bhushan, S. and Kumari, C. (2018). Some Classes of Log Type Estimators Using Auxiliary Attribute for Population Variance, International Journal of Scientific and Engineering Research, Volume 9, Issue 6, pg 1823-1832.
[4] Bhushan, S. and Kumari, C. (2018). Estimation of Variance of Finite Population Using Double Sampling Scheme, International Journal of Scientific and Engineering Research, Volume 9, Issue 8, pg 1893-1901.
[5] Kumari, C., Bhushan, S. and Thakur, R. K. (2018). Modied Ratio Estimators Using Two Auxiliary Information for Estimating Population Variance in Two-Phase Sampling, International Journal of Scientific and Engineering Research, Volume 9, Issue 8, pg 1884- 1892.
[6] Kumari, C., Bhushan, S. And Thakur, R. K. (2019). Optimal Two Parameter Logarithmic Estimators for Estimating the Population Variance, Global Journal of Pure and Applied Mathematics, Volume 15, Issue 5, pg 527-237.
[7] Bhushan, S. and Kumari, C (2019). Double Sampling Log-type Estimator Using Auxiliary Attribute for Population Variance, Journal of Statistics Applications & Probability, 6, No. 3, pg 1-6
[8] Kadilar C. and Cingi H. (2006a). Improvement in variance estimation using auxiliary information, Hacet. J. Math. Stat., 1(35), 111-115.
[9] Kadilar C. and Cingi H. (2006b). Ratio estimators for population variance in simple and stratied sampling, App. Math. Comp., 1(73), 1047-1058.
[10] Kadilar C. and Cingi H. (2014). A two parameter variance estimator using auxiliary information, App. Math. Comp., 117-122.
[11] Hidiroglou M. A. and Sarndal C. E. (1998). Use of auxiliary information for two-phase sampling , Surv. Methodol., 24(1), 11-20. 7
[12] Swain A. K. P. C. and Mishra G. (1994). Estimation of population variance under unequal probability sampling , Sankhya, B (56), 374-384.
[13] Bahl S. and Tuteja R. K. (1991). Ratio and Product type exponential estimator, Info. Optim. Sci., XII(I), 159-163.
[14] Sukhatme P. V., Sukhatme B. V., Sukhatme S. and Ashok C. (1984). Sampling Theory of Surveys with Applications , Iowa State Univ. Press, Ames.
[15] Isaki C. T. (1983). Variance estimation using Auxiliary Information , J. Amer. Stat. Asso., 78, 117-123.
[16] Chaudhury A. (1978). On estimating the variance of a finite population. Metrika, 25, 66-67.
[17] Das A. K. and Tripathi T. P. (1978). Use of auxiliary information in estimating the nite population variance. Sankhya, C(4), 139-148.
[18] Cochran W. G. (1963). Sampling Techniques , Wiley Eastern Private Limited, New Delhi.
[19] Neyman J. (1938). Contribution to the theory of sampling human populations, J. Amer. Stat. Asso., 33, 101-116.
[20] Cebrian A. A. and Garcia R. M. (1997). Variance estimation using auxiliary information : an almost multivariate ratio estimator, Metrika, 45, 171-178.
[21] Garcia R. M. and Cebrian A. A. (1996). Repeat substitution method: the ratio estimator for population variance, Metrika, 43, 101-105.
[22] Upadhaya L. N. and Singh H. P. (2001). Estimation of the population standard deviation using auxiliary information, Ame. J. Math. Manag. Sci., 21, 345-385.
[23] Searls D. T. (1964). Utilization of known coecient of kurtosis in the estimation procedure of variance, J. Amer. Stat. Assoc., 59, 1125-1226.
[24] Prasad B. and Singh H. P. (1992).Unbiased estimators of nite population variance using auxiliary information sample surveys, Commun. Stat. : Theory and Methods, 21(5), 1367- 1376. 8

Citation :

Chandni Kumari, Ratan Kumar Thakur, "A FAMILY OF LOGARITHMIC ESTIMATORS FOR POPULATION VARIANCE UNDER DOUBLE SAMPLING," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 4, pp. 99-105, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I4P515

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved