...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 67 | Issue 10 | Year 2021 | Article Id. IJMTT-V67I10P503 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I10P503

Some Properties of Analytic and P-Valent Functions Involving Certain Convolution Operators


Yakubu Gambo, Kunle Oladeji Babalola, Adamu Umar Mustapha, Daniel Eneojo Emmanuel
Citation :

Yakubu Gambo, Kunle Oladeji Babalola, Adamu Umar Mustapha, Daniel Eneojo Emmanuel, "Some Properties of Analytic and P-Valent Functions Involving Certain Convolution Operators," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 10, pp. 34-40, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I10P503

Abstract

Let A(p) be denote the class of functions that are analytic in the unit disk E which have the form; f(z) = zp +ap+1 zp+1 + ap+2 zp+2 + ap+3zp+3 +.... the class of functions satisfying the geometric condition Re{ (Mnσ,p f(z)) / zp } >β was defined where, Mnσ,p : A(p) -> A(p) is an operator define using convolution * The main concern of this work is to obtain some basic properties of the class with geometric condition above. These properties include; Inclusion, Growth, and Covering theorem.

Keywords
Convolution operators, analytic and p-valent functions.
References

[1] Babalola, K. O., & Opoola, T. O. (2006). Iterated integral transforms of Caratheodory functions and their applications to analytic and univalent functions. Tamkang Journal of Mathematics, 37(4), 355-366.
[2] Babalola, K. O., (2008). New subclasses of analytic and univalent functions involving certain convolution operators. Mathematica Tome, 50(73), 3-12.
[3] Goel, R. M., & Sohi, N. S. (1980). Subclasses of univalent functions. Tamkang. J.. Math. 77-81.
[4] Noor, K.I. (1998). On an integral operator, J. Nat. Geometry, 13 (2), 127200.
[5] Noor, K. I. (2005). Generalized integral operator and multivalent functions. J. Inequal. Pure Appl. Math, 6, 1-7.
[6] Noor, K. I. (2004). Some classes of p-valent analytic functions defined by certain integral operator. Applied Mathematics and Computation, 157(3), 835-840.
[7] Pommerenke, Ch., Univalent functions, Springer-Verlag, New York Inc., 1983.
[8] Ruscheweyh, S. (1975). New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1), 109115.

  • PDF
  • Citation
  • Abstract
  • Keywords
  • References
Citation Abstract Keywords References
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved