...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 67 | Issue 2 | Year 2021 | Article Id. IJMTT-V67I2P506 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I2P506

Periodic Solutions of Functional Difference Equations


Shilpee Srivastava Saxena
Abstract

In this paper, the existence of at least two positive periodic solutions for the following functional difference equation 𝛥𝑦(𝑛) = 𝑎(𝑛)𝑔(𝑦(𝑛))𝑦(𝑛) − 𝜆𝑏(𝑛)𝑓(𝑛, 𝑦(ℎ(𝑛))) has been studied. An application of the equation has been given to study the periodic solutions of model of allee effect.

Keywords
Allee effect, Fixed point theorem, Functional difference equation, Periodic solution, Positive solution
References

[1] D.Bai, Y.Xu; Periodic solutions of first order functional di erential equations with periodic deviations, Comp. Math. Appl., 53(2007) 1361-1366.
[2] K.S.Chiu; Green's function for periodic solutions in alternately advanced and delayed differential systems, Acta Math. Appl. Sin. Engl. ser. 36, 936- 951(2020).
[3] K.Deimling; Nonlinear Functional Analysis, Springer, Berlin, 1985.
[4] J.Dix, S.Padhi and S.Pati; Multiple positive periodic solutions for a nonlinear first order functional difference equation, J. Difference Equat. Appl., 16(2010) 1-10.
[5] P.K.Eloe, Y.Raffoul, D.Reid and K.Yin; Positive solutions of nonlinear func- tional difference equations, Comp. Math. Appl., 42(2001) 639-646.
[6] J.Graef, L.Kong; Periodic solutions of frst order functional differential equa- tions, Appl. Math. Letters, 24(2011) 1981-1985.
[7] J.Graef, S. Padhi, S.Pati, P.K.Kar; Positive solutions of differential equations with unbounded green's kernal, Appl. Anal. Discrete Math. 6(2012), 159-173.
[8] D.Jiang, R.P.Agarwal; Existence of positive periodic solutions for a class of difference equations with several deviating arguments, Comp. Math. Appl., 45(2003) 1303-1309.
[9] D.Jiang, D.O'Regan and R.P.Agarwal; Optimal existence theory for single and multiple positive periodic solutions to functional difference equations, Appl. Math. Comp., 161(2005) 441-462.
[10] Z.L.Jin, H.Wang; A note on positive periodic solutions of delayed differential equations, Appl. Math. Letters, 23(2010) 581-584.
[11] Y.Kuang; Delay Differential Equations with Applications in Population Dy- namics, Academic Press, New York, 1993.
[12] R.W.Leggett, L.R.Williams; Multiple positive fixed points of nonlinear oper- ators on ordered Banach spaces, Indiana Univ. Math. J., 28(1979) 673-688.
[13] J.Leng; Existence of periodic solutions for higher order nonlinear difference equations, Elect. J. Diff. Equat.2016(2016), No.134, 1-10.
[14] Y.Li, L.Zhu and P.Liu; Positive periodic solutions of nonlinear functional difference equations depending on a parameter, Comp. Math. Appl., 48(2004) 1453-1459. Global
[15] B.Liu; Exponential stability of positive periodic solutions for a delayed Nichol- son's blow ies model, J. Math. Anal. Appl. 412(1), 2014, 212-221.
[16] Y.Liu; Periodic solution of nonlinear functional difference equation at non- resonance case, J. Math. Anal. Appl., 327(2007) 801-815.
[17] M.Ma, J.S.Yu; Existence of multiple positive periodic solutions for nonlinear functional difference equations, J. Math. Anal. Appl., 305(2005) 483-490.
[18] S.Padhi, S.Pati and S.Srivastava; Multiple positive periodic solutions for non- linear first order functional difference equations, Int. J. Dynam. Sys. Diff. Eq., Vol. 2, Nos.1/2, 2009.
[19] M.A.Radin; Periodic Character of Solutions of First Order Nonlinear Differ- ence Equations, In: Periodic Character and Patterns of Recursive Sequences. Springer, Cham, 2018. [20] N.Raffoul; Positive periodic solutions of nonlinear functional difference equa- tions; Elect. J. Differential Equat., 2002(2002) No.55,1-8.
[21] S. Srivastava; Periodic solutions of delayed difference equations, Bulletin Math. Ana. Appl., Vol. 4, 3(2012) 18-28.
[22] H.Wang; Positive periodic solutions of functional differential equations, J. Diff. Equat., 202(2004) 354-366.
[23] Z.Zeng; Existence of positive periodic solutions for a class of nonautonomous difference equations , Elect. J.Differential Equat., 2006(2006) N0.3,1-18.

Citation :

Shilpee Srivastava Saxena, "Periodic Solutions of Functional Difference Equations," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 2, pp. 36-42, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I2P506

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved