...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 67 | Issue 3 | Year 2021 | Article Id. IJMTT-V67I3P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V67I3P505

GENERALIZED WEINSTEIN AND SOBOLEV SPACES


HASSEN BEN MOHAMED
Abstract

In this paper we present a brief history and the basic ideas of the generalized Weinstein operator ΔWα,d,n which generalizes the Weinstein operator ΔWα,d,n. In n=0 we regain the Weinstein operator has several applications in pure and applied mathematics especially in fluid mechanics. We study the Sobolev spaces of exponential type Hsα,n(R+d+1) associated with the generalized Weinstein and investigate their properties, Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Using the theory of reproducing kernels ( which was written in 1942-1943), we introduce a class of symbols of exponential type and their associated pseudo differential operators related to the generalized Weinstein operator ΔWα,d,n and finally, we give some applications to these spaces.

Keywords
Sobolev Spaces, Generalized Weinstein operator, Generalized Weinstein transform, Weinstein, Kernel Reproducing Theory, pseudodi erential operator.
References

[1] A. Aboulez, A. Achak, R. Daher and E. Loualid, Harmonic analysis associated with the generalized Weinstein operator. International.J. of Analysis and Applications. Vol.9,Nr 1, (2015), p. 19-28.
[2] H. Ben Mohamed, N. Bettaibi and S.H. Jah. Sobolev type spaces associated with the Weinstein operator , Int. Journal of Math. Analysis, Vol.5, Nr.28, (2011), p.1353- 1373.
[3] H. Ben Mohamed, B. Ghribi Weinstein-Sobolev spaces of exponential type and appli- cations . Acta Mathematica Sinica, English Series,Vol.29, Nr.3,(2013), p.591-608.
[4] H. Ben Mohamed, A. Gasmi and N. Bettaibi. Inversion of the Weinstein intertwining operator and its dual using Weinstein wavelets. An. St. Univ. Ovidius Constanta. Vol. 1, Nr1, (2016), p. 1-19.
[5] H. Ben Mohamed. On the Weinstein equations in spaces DPα,d type. International Journal of Open Problems in Complex Analysis. Vol.9, Nr 1, ( 2017), p. 39-59.
[6] K. El-Hussein. Fourier transform and Plancherel Theorem for Nilpotent Lie Group. International Journal of Mathematics Trends and Technology. Vol.4 Issue 11, (2013), p. 288-294.
[7] I. Aliev. Investigation on the Fourier-Bessel harmonic analusis, Doctoral Dissertation, Baku 1993 ( in Russian).
[8] I.A. Aliev and B. Rubin. Parabolic potentials and wavet transform with the generalized translation. Studia Math. 145 (2001) Nr1, p. 1-16.
[9] I.A. Aliev and B. Rubin. Spherical harmonics associated to the Laplace-Bessel operator and generalized spherical convolutions. Anal. Appl. (Singap) Nr 1 (2003), p. 81-109.
[10] S. Lee, Generalized Sobolev spaces of exponential type, Kangweon-Kyungki Math. J. Vol.8, Nr 1 (2000) p. 73-86.
[11] J. Lofstrom and J. Peetre. Approximation theorems connected with generalized translations. Math. Ann. Nr 181 (1969), p. 255-268.
[12] D. H. Pahk and B. H. Kang, Sobolev spaces in the generlized distribution spaces of Beurling type, Tsukuba J. Math. Vol. 15, (1991) p.325-334.
[13] R. S. Pathak, Generalized Sobolev spaces and pseudo-differential operators on spaces of ultradistributions, Structure of solutions of diffential equations, Edited y M.Morimoto and T. Kawai, World Scientific, Singafore (1996) p. 343-368.
[14] K. Stempak. La theorie de Littlewood-Paley pour la transformation de Fourier-Bessel. C.R. Acad.Sci. Paris Ser. I303 (1986), p. 15-18.
[15] K. Trimeche. Generalized Wavet and Hypergroups. Gordon and Breach, New York, 1997.
[16] A.Saoudi. A Variation of LP Uncertainty Principles in Weinstein Setting. Indian J.Pure Appl. Math., 51(4),(2020), p. 1697-1712.

Citation :

HASSEN BEN MOHAMED, "GENERALIZED WEINSTEIN AND SOBOLEV SPACES," International Journal of Mathematics Trends and Technology (IJMTT), vol. 67, no. 3, pp. 28-44, 2021. Crossref, https://doi.org/10.14445/22315373/IJMTT-V67I3P505

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved