...

  • Home
  • Articles
    • Current Issue
    • Archives
  • Authors
    • Author Guidelines
    • Policies
    • Downloads
  • Editors
  • Reviewers
...

International Journal of Mathematics Trends and Technology

Research Article | Open Access | Download PDF

Volume 6 | Number 1 | Year 2014 | Article Id. IJMTT-V6P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V6P502

Existential and Uniqueness Results for Initial Value Problems associated with Non-linear Singular Interface Problems on Time Scales using Fixed Point Theorems


D. K. K. Vamsi, K.N.V.S.D. Dwarakanath, I. Aditya and P. K.
Abstract

In this paper we present existential and uniqueness results for IVPs associated with general nonlinear singular interface problems on Time Scales. We discuss these results for a fourth order IVP associated with nonlinear singular interface problems using the classical fixed point theorems of Banach and Schauder.

Keywords
Regular problems, Singular problems, Singular interface problems, Fixed point theorems.
References

[1] F. V. Atkinson, Discrete and continuous boundary problems, Mathematics in Science and Engineering, Vol. 8 Academic Press, New York-London, 1964.
[2] M. Bohner and A. Peterson, Dynamic equations on time scales. An introduction with applications, Birkhuser Boston, Inc., Boston, MA, 2001.
[3] C. Allan Boyles, Acoustic Waveguides, Applications to Oceanic Sciences, John- Wiley and Sons, 1978.
[4] C. T. Fulton, Parametrizations of Titchmarshs m()-functions in the limit circle case, Trans. Amer. Math. Soc. 229 (1977), 51-63.
[5] P. K. Ghosh, The Mathematics of Waves and Vibrations, MacMillan, 1975.
[6] D. B. Hinton and J. K. Shaw, Titchmarsh-Weyl theory for Hamiltonian sys- tems. Spectral theory of differential operators (Birmingham, Ala., 1981), North- Holland Math. Stud., 219-231, 55, North-Holland, Amsterdam- New York, 1981.
[7] John Von Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionalop- eratoren, Math. Ann. 102(1929), 49{131.
[8] H. G. Kaper, M. Kwong, and A. Zettl, Anton Characterizations of the Friedrichs extensions of singular Sturm-Liouville expressions, SIAM J. Math. Anal. 17 (1986), 772-777.
[9] K. Kodaria, On ordinary differential equations of any even order and the corre- sponding eigenfunction expansions, Amer. J. Math. 72 (1950), 502-544.
[10] B. M. Levitan and I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Translated from the Russian by Amiel Feinstein. Translations of Mathematical Monographs, Vol. 39. American Mathematical Society, Providence, R.I., 1975.
[11] G. L. Lamb, Elements of Soliton Theory, JohnWiley and Sons, 1980.
[12] F. Merdivenci Atici and G. Sh. Guseinov, On Greens functions and posi- tive solutions for boundary value problems on time scales, J. Comput. Appl. Math.141(2002), 75-99.
[13] M. A. Naimark, Linear di erential operators. Part II: Linear di erential opera- tors in Hilbert space, With additional material by the author, and a supplement by V. . Ljance. Translated from the Russian by E. R. Dawson. English transla- tion edited by W. N. Everitt Frederick Ungar Publishing Co., New York 1968.
[14] K. Noda, Optical Fiber Transmission, Studies in Telecommunications, North- Holland, 1986.
[15] Pallav Kumar Baruah and Dibya Jyothi Das, Singular Sturm Liouville problems with an interface, Int. J. Math. Sci. 3 (2004), 323-340.
[16] Pallav Kumar Baruah and D. K. K. Vamsi, IVPs for Singular Interface Prob- lems, to appear.
[17] Pallav Kumar Baruah and Dasu Krishna Kiran Vamsi, Oscillation Theory for a Pair of Second Order Dynamic Equations with a Singular Interface, Electron. J. Differential Equations 43 (2008), 1{7.
[18] Pallav Kumar Baruah and M. Venkatesulu, Characterization of the resolvent of a differential operator generated by a pair of singular ordinary differential expressions satisfying certain matching interface conditions, Int. J. Mod. Math. 1 (2006), 31{47.
[19] Pallav Kumar Baruah and M. Venkatesulu, Deficiency indices of a differential operator satisfying certain matching interface conditions, Electron. J. Differential Equations 38 (2005), 1{9.
[20] Pallav Kumar Baruah and M. Venkatesulu, Number of linearly independent square integrable solutions of a pair of ordinary differential equations satisfying certain matching interface conditions, to appear.
[21] Pallav Kumar Baruah and M. Venkatesulu, Self adjoint boundary value prob- lems associated with a pair of singular ordinary differential expressions with interface spatial conditions, submitted.
[22] Pallav Kumar Baruah and M. Venkatesulu, Spectrum of pair of ordinary dif- ferential operators with a matching interface conditions, to appear.
[23] A. Pleijel, Generalized Weyl circles, Lecture Notes in Math., Vol. 415, Springer, Berlin, 1974, 211-226.
[24] E. C. Titchmarsh, Eigenfunction expansions associated with second-order dif- ferential equations, Part I, Second Edition Clarendon Press, Oxford, 1962.
[25] D. K. K. Vamsi, IVP's for a Pair of Dynamic Equations with Matching Inter- face Conditions, Sri Sathya Sai Institute of Higher Learning, March 2006.
[26] M. Venkatesulu and Pallav Kumar Baruah, A classical approach to eigenvalue problems associated with a pair of mixed regular Sturm-Liouville equations-I, J. Appl. Math. Stoch. Anal. 14 (2001), 205-214.
[27] M. Venkatesulu and Pallav Kumar Baruah, A classical approach to eigenvalue problems associated with a pair of mixed regular Sturm-Liouville equations-II, J. Appl. Math. Stoch. Anal. 15 (2002), 197-203.
[28] M. Venkatesulu and T. Gnana Bhaskar, Computation of Greens matrices for boundary value problems associated with a pair of mixed linear regular ordinary differential operators, Int. J. Math. Math. Sci. 18 (1995), 789-797.
[29] M. Venkatesulu and T.Gnana Bhaskar, Fundamental systems and solutions of nonhomogeneous equations for a pair of mixed linear ordinary differential equations, J. Aust. Math. Soc.(Series A), 49 (1990), 161-173.
[30] M. Venkatesulu and T.Gnana Bhaskar, Selfadjoint boundary value problems associated with a pair of mixed linear ordinary differential equations, J. Math. Anal. Appl. 144 (1989), 322-341.
[31] M. Venkatesulu and Pallav Kumar Baruah, Solutions of initial value problems for a pair of linear first order ordinary differential systems with interface spatial conditions, J. Appl. Math. Stoch. Anal. 9 (1996), 303-314.
[32] M. Venkatesulu and T.Gnana Bhaskar, Solutions of initial value problems asso- ciated with a pair of mixed linear ordinary differential equations, J. Math. Anal. Appl. 148 (1990), 63-78.
[33] D.K.K.Vamsi, A study of pair of Dynamic equations with singular interface, M.Phil. Thesis, Sri Sathya Sai Institute of Higher Learning, 2008.
[34] D.K.K.Vamsi, Existential Results for Nonlinear Singular Interface Problems Involving Second Order Nonlinear Dynamic Equations Using Picards Iterative Technique, The Journal of Nonlinear Analysis and Applications, Vol. 4, No. 3 , (2011), 200-209.
[35] D.K.K.Vamsi, Disconjugacy(D) and Non-Oscillation(N) Domains for Nonlin- ear Singular Interface Problems on Semi Infinite Time Scales,ISRN Mathemat- ical Analysis, Vol. 2011, 23.
[36] D.K.K.Vamsi, Existential Results for Nonlinear Sturm-Liouville Singular In- terface Problems,International Journal of Mathematics Research, Vol. 4, No. 1, (2012), 1-14.
[37] D.K.K.Vamsi, Existential of Positive Solutions and Eigenvalue Intervals for Nonlinear Sturm Liouville Problems with a Singular Interface,Electronic Journal of Differential Equations, Vol. (2012), No. 53, (2012), 1-12.
[38] D.K.K.Vamsi, Existential of Multiple Positive Solutions Localization of Eigen Values for a Nonlocal Boundary Value Problem Involving a Pair of Second Or- der Dynamic Equations with a Singular Interface,Advances in Theoretical and Applied Mathematics , Vol. 7, No. 3, (2012), 281-294.
[39] D.K.K.Vamsi, Existential of Multiple Positive Solutions Localization of Eigen Values for Nonlinear Sturm Liouville Problems with a Singular Interface using the Greens Matrix,International Journal of Mathematical Analysis, Vol. 6, No. 39, (2012), 1891-1910.
[40] D.K.K.Vamsi, Existential and Uniqueness Results for IVPs associated with Nonlinear Singular Interface Problems on Time Scales, International Journal of Nonlinear Analysis and Applications, Vol. 2012.
[41] D.K.K.Vamsi, Existential and Uniqueness Results for BVPs associated with Nonlinear Singular Interface Problems on Time Scales, Advanced Dynamical Systems and Applications, Vol. 6, No. 2, (2011), 271-290.
[42] H. Weyl, Uber gewhnliche Di erentialgleichungen mit Singularitten und die zugehrigen Entwicklungen willkrlicher Funktionen (German), Math. Ann. 68 (1910), 220-269.
[43] Chi-Teh Wang, Applied Elasticity, McGraw Hill, 1953.

Citation :

D. K. K. Vamsi, K.N.V.S.D. Dwarakanath, I. Aditya and P. K., "Existential and Uniqueness Results for Initial Value Problems associated with Non-linear Singular Interface Problems on Time Scales using Fixed Point Theorems," International Journal of Mathematics Trends and Technology (IJMTT), vol. 6, no. 1, pp. 7-35, 2014. Crossref, https://doi.org/10.14445/22315373/IJMTT-V6P502

  • PDF
  • Abstract
  • Keywords
  • References
  • Citation
Abstract Keywords References Citation
  • Home
  • Authors Guidelines
  • Paper Submission
  • APC
  • Archives
  • Downloads
  • Open Access
  • Publication Ethics
  • Copyrights Infringement
  • Journals
  • FAQ
  • Contact Us

Follow Us

Copyright © 2025 Seventh Sense Research Group® . All Rights Reserved