Review Article - A study of some fixed point
theorems for various types of maps

Masroor Mohammad, Rizwana Jamal, Qazi Aftab Kabir "Review Article - A study of some fixed point
theorems for various types of maps", *International Journal of Mathematics Trends and Technology (IJMTT). *V39(1):18-21 November 2016. ISSN:2231-5373. www.ijmttjournal.org. Published by Seventh Sense Research Group.

**Abstract**

Fixed point theory off course entails the search for a
combination of conditions on a set S and a mapping
T : S → S which, in turn, assures that T leaves at
least one point of S fixed, i.e. x = T( x ) for some x ϵ
S. The theory has several rather well-defined (yet
overlapping) branches. The purely topological theory
as well as those topics which lie on the borderline of
topology and functional analysis (e.g. those related to
Leray-Schauder theory) have their roots in the
celebrated theorem of L. E. J. Brouwer. This paper
presents a review of the available literature on fixed
point theorems for various types of maps.

**References**

[1] Altun, I. and Turkoglu, D. (2009). Some fixed point theorems
for weakly compatible mappings satisfying an implicit
relation. Taiwanese J. Math. (13)4: 1291–1304.

[2] Asad, A. J. and Ahmad, Z. (1999). Common fixed point of
multi-valued mappings with weak commu-tativity conditions.
Radovi, Math. 9: 119–124.

[3] Aydi, H., Jellali, M. and Karapinar E. Common fixed points
for generalized _-implicit contractions in partial metric
spaces: Consequences and application, RACSAM–Revista de
la Real Academia de Ciencias Exactas. Físicas y Naturales.
Serie A. Matemáticas. To appear.

[4] Berinde, M and Berinde, V. (2007). On a general class of
multi-valued weakly Picard mappings. J. Math. Anal. Appl.
326: 772–782.

[5] Browder, F. E. (1976). Nonlinear operators and nonlinear
equations of evolution in Banach spaces. Proc. Symp. Pure
Math., (18)2: American Mathematical Society, Providence,
RI.

[6] Daffer, P. Z and Kaneko, H. (1995). Fixed points of
generalized contractive multi-valued mappings. J. Math.
Anal. Appl. 192: 655–666.

[7] Fisher, B. (1983). Common fixed point of four mappings.
Bull. Inst. Math. Acad. Sinica, 11: 103–113.

[8] Fisher, B. (1979). Mappings satisfying rational inequality.
Nanta Math., 12: 195–199.

[9] Gulyaz. S. and Karapinar, E. (2013). Coupled fixed point
result in partially ordered partial metric spaces through
implicit function. Hacet. J. Math. Stat. (42)4: 347–357.

[10] Gulyaz, S., Karapinar, E. and Yuce, I. S. (2013). A coupled
coincidence point theorem in partially ordered metric spaces
with an implicit relation. Fixed Point Theory Appl. 2013, 38:
11.

[11] Hitzler, P. and Seda, A. K. (1999). Multi-valued mappings,
fixed point theorems and disjunctive databases. 3rd Irish
Workshop on Formal Methods (IWFM-99), EWIC, British
Computer Society.

[12] Husain, T. and Latif, A. (1991). Fixed points of multi-valued
nonexpansive maps. Internat. J. Math. & Math. Sci. (14)3:
421-430.

[13] Jungck, G. (1976). Commutating mappings and fixed points.
Amer. Math. Monthly, 83: 261–263.

[14] Jungck, G. (1986). Compatible mappings and common fixed
points. Internat J. Math. Math. Sci., 9(4): 771–779.

[15] Jungck, G. and Rhoades, B. E. (1998). Fixed point for set
valued functions without continuity. Ind. J. Pure and Appl.
Math., 29(3): 227–238.

[16] Kamran, T. (2004). Coincidence and fixed points for hybrid
strict contractions. J. Math. Anal. Appl., 299: 235–241.

[17] Kaneko, H. (1988). A common fixed point of weakly
commuting multi-valued mappings. Math. Japon., 33(5):
741–744.

[18] Kaneko, H. and Sessa, S. (1989). Fixed point theorems for
compatible multi-valued and single-valued mappings.
Internat. J. Math. Math. Sci., 12(2): 257–262.

[19] Karapinar, E. and Erhan, I. M. (2012). Cyclic contractions
and fixed point theorems. Filomat. (26)4: 777–782.

[20] Karapinar, E. (2011). Fixed point theory for cyclic weak _-
contraction. Appl. Math. Lett. (24)6: 822–825.

[21] Kirk, W. A. and Massa, S. (1990). Remarks on asymptotic
and Chebyshev centers. Houston J. Math. (16) 3: 357-364.

[22] Kirk, W.A., Srinivasan, P.S. and Veeramani, P. (2003). Fixed
points for mappings satisfying cyclical contractive
conditions. Fixed Point Theory. (4)1: 79–89.

[23] Kubiak, T. (1985). Fixed point theorems for contractive type
multi-valued mappings. Math. Japon., 30: 89–101.

[24] Kubiaczyk, I. and Mostafa Ali, N. (1996). A multi-valued
fixed point theorems in non Archimedean vector spaces. Novi
Sad J. Math., 26(2): 111–115.

[25] Kyzyska, S. and Kubiaczyk, I. (1998). Fixed point theorems
for upper semicontinuous and weakly upper semicontinuous
multi-valued mappings. Math. Japonica, (47)2: 237–240.

[26] Lami Dozo, E. (1973). Multi-valued nonexpansive mappings
and Opial’s condition. Proc. Amer. Math. Soc. 38: 286-292.

[27] Lim, T. C. (1974). A fixed point theorem for multi-valued
nonexpansive mappings in a uniformly convex Banach space.
Bull. Amer. Math. Soc. 80: 1123-1126.

[28] Markin, J. (1968). A fixed point theorem for set valued
mappings. Bull. Amer. Math. Soc. 74: 639-640.

[29] Miklaszewski, D. (2001). A fixed point theorem for
multivalued mappings with noncyclic values. Topological
Methods in Nonlinear Analysis Journal of the Juliusz
Schauder Center, 17: 125–131.

[30] Moutawakil, D. E. (2004). A fixed point theorem for multivalued
maps in symmetric spaces. Applied Mathematics ENotes,
4: 26-32.

[31] Nadler, S. B. (1969). Multi-valued contraction mappings.
Pacific J. Math. (20)2: 457–488.

[32] Nashine, H. K., Kadelburg, Z. and Kumam, P. (2012).
Implicit-relation-type cyclic contractive mappings and
applications to integral equations. Abstr. Appl. Anal. Art. ID
386253, 15 pp.

[33] Olatinwo, M. O. (2009). A fixed point theorem for multivalued
weakly picard operators in b-metric spaces.
Demonstratio mathematica, (XLII)3: (2009).

[34] Pacurar, M. (2011). Fixed point theory for cyclic Berinde
operators. Fixed Point Theory (12)2: 419–428.

[35] Pacurar, M. and Rus, I. A. (2010). Fixed point theory for
cyclic '-contractions. Nonlinear Anal. 72: 1181–1187.

[36] Pant, R. P. (1994). Common fixed points of non-commuting
mappings. J. Math. Anal. Appl., 188: 436–440.

[37] Pant, R. P. (1998). Common fixed point theorems for
contractive maps. J. Math. Anal. Appl. 236: 251–258.

[38] Pant, R. P. (1999). Common fixed points of Lipschitz type
mapping pairs. J. Math. Anal. Appl., 240: 280–283.

[39] Pant, R. P. (1999). Discontinuity and fixed points. J. Math.
Anal. Appl., 240: 284–289.

[40] Percup, R. (2002). Fixed point theorems for acyclic multivalued
maps and inclusions of Hammerstein type. Seminar
on Fixed Point Theory Cluj-Napoca, 3: 327-334.

[41] Petric, M. A. (2010). Some results concerning cyclical
contractive mappings. Gen. Math. (18)4: 213–226.

[42] Popa, V. (1997). Some fixed point theorems for implicit
contractive mappings. Stud. Cercet. Stiinμ., Ser. Mat., Univ.
Bacau 7: 129–133.

[43] Popa,V. (2000). A general coincidence theorem for
compatible multi-valued mappings satisfying an implicit
relation. Demonstratio Math. (33)1: 159–164.

[44] Popa, V. (1999). A general fixed point theorem for weakly
commuting multi-valued mappings. Anal. Univ. Dunarea de
Jos, Galaμi, Ser. Mat. Fiz. Mec. Teor., Fasc. II 18 (22): 19–
22.

[45] Popa, V. (2015). A general fixed point theorem for implicit
cyclic multi-valued contraction mappings. Annales
Mathematicae Silesianae 29: 119–129.

[46] Popa, V. (1999). Some fixed point theorems for compatible
mappings satisfying an implicit relation. Demonstratio Math.
(32)1: 157–163.

[47] Reich, S. (1983). Some problems and results in fixed point
theory. Contemporary Math. 21: 179-187.

[48] Rus, I. A. (2005). Cyclic representations of fixed points. Ann.
Tiberiu Popoviciu, Semin. Funct. Equ. Approx. Convexity, 3:
171–178.

[49] Shahzad, N. and Kamran, T. (2001). Coincidence points and
R-weakly commuting maps. Arch. Math. (Brno), 37: 179–
183.

[50] Sessa, S. (1982). On weak commutativity condition of
mappings in fixed point consideration. Publ. Inst. Math., (
32)46: 149–155.

[51] Singh, S. L. and Singh, S. P. (1980). A fixed point theorem.
Ind. J. Pure Appl. Math., 11: 1584–1586.

[52] Singh, S. L. and Mishra, S. N. (2001). Coincidence and fixed
points of non self hybrid contraction. J. Math. Anal. Appl.,
256: 486–497.

[53] Sintunavarat, W. and Kumam, P. (2012). Common fixed
point theorem for cyclic generalized multi-valued mappings.
Appl. Math. Lett. 25: 1849–1855.

[54] Xu, H. K. (2000). Metric Fixed Point Theory for Multivalued
Mappings. Dissertations Math. (Rozprawy Mat.) 389.

**Keywords**

Fixed point theorems, multivalued
mappings, nonexpansive mappings.