Anticirculant Structured block weighing matrices from Williamson matrices

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2017 by IJMTT Journal
Volume-52 Number-4
Year of Publication : 2017
Authors : M.K.Singh, S.N. Topno, T. Paswan
  10.14445/22315373/IJMTT-V52P534

MLA

M.K.Singh, S.N. Topno, T. Paswan "Anticirculant Structured block weighing matrices from Williamson matrices", International Journal of Mathematics Trends and Technology (IJMTT). V52(4):229-233 December 2017. ISSN:2231-5373. www.ijmttjournal.org. Published by Seventh Sense Research Group.

Abstract
Recent advances in optical quantum computing created an interest in Hankel block Weighing matrices. This paper forwards a partial answer to a open problem posed by Arasu and his coworkers by constructing some in nitefamilies of anticirculant block weighing matrices with additional structures.

Reference
[1] K.T. Arasu, S. Severini, E. Velten, Block Weighing Matrices, Cryptogr. Commun. (2013) 5: 201. doi:10.1007/s12095-013-0083-0
[2] H.J. Briegel, R. Raussendorf, Persistent en- tanglement in arrays of interacting particles,Phys. Rev. Lett. 86 910 (2001).
[3] R. Craigen and H. Kharaghani , Hadamard Matrices and Hadamard Designs in Handbook of Combinatorial designs (eds. C.J.Colbourn and J.H. Dinitz)2nd edition,Chapman and Hall/CRC, Boca Raton (2007).
[4] R. Craigen , and H. Kharaghani , Orthogo-nal Designs in Handbook of Combinatorial designs (eds. C.J.Colbourn and J.H. Dinitz)2nd edition,Chapman and Hall/CRC, Boca Raton(2007).
[5] S. T.Flammia, S. Severini ,Weighing matrices and optical quantum computing, J. Phys.A: Math. Theor. 42(2009)065302
[6] A.V. Geramita, J. Seberry, : Orthogonal Designs: Quadratic Forms and Hadamard Matrices. Marcel Decker, New York-Basel (1979).
[7] M. Hall, Jr., Combinatorial Theory , Wiley,New York 2nd edition,(1986).
[8] N. C. Menicucci, S. T. Flammia, and O. P ster, One-way quantum computing in the optical frequency comb, Phys. Rev. Lett. 101 130501(2008).
[9] R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86 5188(2001).
[10] M.K.Singh and S.N. Topno, On the construction of Hadamard matrices of order 4n(n odd,n 3) with Hadamard blocks of order 4, Acta Ciencia Indica,vol XL M,No.3.309(2014).
[11] R. J. Turyn, An in nite class of Williamson Matrices , J.Combin. Theo. Ser. A. 1972.946.

Keywords
Williamson matrices, Weighing matrices, block matrices, Hadamard matrices.