Product of Composition Operators

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2019 by IJMTT Journal
Volume-65 Issue-2
Year of Publication : 2019
Authors : Dr. S. K. Latha
  10.14445/22315373/IJMTT-V65I2P506

MLA

MLA Style:Dr. S. K. Latha "Product of Composition Operators" International Journal of Mathematics Trends and Technology 65.2 (2019): 27-30.

APA Style: Dr. S. K. Latha (2019). Product of Composition Operators. International Journal of Mathematics Trends and Technology, 65(2), 27-30.

Abstract
In this paper it is proved that the product of two composition operators C1 and C2 with h2h1=1 and h1=h1 T1 is quasi isometry and 2-isometry. Also it Is proved that this condition is not necessary for C1 and C2 with an example.

References
[1] Agler. J and Stankus. M, m-isometries transformations of Hilbert space, I. Integral Equations and Operator theory, 21(1995), 383-427
[2] S. Panayappan, Non–Hyponormal Composition Operators, Indian Journal of Math. 35(1993), 293-98
[3] Patel S. M., 2- Isometric Operators, Glasnik Matematicki, Vol 37 (57) (2002) 143-147
[4] Patel S. M., A note on Quasi-isometries, Glasnik Matematicki, Vol 35 (55) (2000) 307-312
[5] Pushpa, R. Suri and Singh.N., M-quasihyponormal Composition operators, Inter. J. Math and Math. Sci., 10(3) , (1987), 621-623.
[6] Singh. R. K., Compact and quasinormal composition operators, Proc. Amer. Math. Soc. 45 (1974), 80-82.
[7] Singh R.K. and David Chandrakumar, R, Some results on Composition operators, Indian Journ. Pure Appl. Math., 14(10) (1983), 1233-1237.
[8] K. Thirugnanasambandam, Class Q composition operators on L2 spaces, Thesis, May 2009, Bharathiar University, India.
[9] S. Panayappan, Non-normal Composition operators on L2 spaces, Thesis, 1993-Bharathiar University, India.
[10] S. Panayappan, S. K. Latha, Some Isometric Composition Operators, Int. J. Contemp. math. Sciences, Vol.5, 2010, no 13, 615-621

Keywords
Isometric operators, Composition Operators