On gγ-τ-Connectedness and gγ-τ Disconnectedness in Topological Spaces

International Journal of Mathematics Trends and Technology (IJMTT)
© 2019 by IJMTT Journal
Volume-65 Issue-3
Year of Publication : 2019
Authors : K.Priyanka, M.Rajeshwari


MLA Style:K.Priyanka, M.Rajeshwari "On gγ-τ-Connectedness and gγ-τ Disconnectedness in Topological Spaces" International Journal of Mathematics Trends and Technology 65.3 (2019): 162-166.

APA Style: K.Priyanka, M.Rajeshwari (2019). On gγ-τ-Connectedness and gγ-τ Disconnectedness in Topological Spaces. International Journal of Mathematics Trends and Technology, 65(3), 162-166.

The aims of this paper is to introduce new approach of separate sets, connected sets and disconnected sets called gγ-τ-Separate sets, gγ-τ-Connected sets and gγ-τ-Disconnected sets of topological spaces with the help of gγ-open sets and gγ-closedsets. On the basis of new introduce approach, some relationship of gγ-Connected sets,gγ-τ-Disconnected sets with gγ-τ -separate sets have been investigated thoroughly.

[1] Andrijević D (1986) Semi-preopen sets,MatematičkiVesnik 38: 24-32.
[2] Arya SP (1990) Characterizations of s-normal spaces, Indian J Pure Appl Math 21: 717-719.
[3] Aslim G, CaksuGuler A, Noiri T (2006) On π gs-closed sets in topological spaces. ActaMathematicaHungarica 112: 275-283.
[4] A.V.Arhangelśkii and R.Wiegandt, Connectedness and disconnectedness in topology, Top. App.5 (1975).
[5] A.V.Arhangelśkii, On P-spaces extremal, disconnecctdness, and some results of Isbell J.R., and V.I.Malychin, Quest. Answ. Gen. Topol., 17 (2) (1999) 257-267.
[6] Clementini, E.; Sharma, J.; Egenhofer, M. J.Modelling topological spatial relations Strategies for queryprocessing. Computers and Graphics, v. 18,n. 6,p. 815-822, 1994.
[7] Dontchev J (1995) On generalizing semi-preopen sets. MemFacSci Kochi UnivSer A (Math) 16: 35-48.
[8] Dontchev J, Noiri T (2000) Quasi-normal spaces and π g-closed sets. Acta Math Hungar 89: 211-219.
[9] Egenhofer, M. J.; Franzosa, R. D. Point-SetTopological Spatial Relations.International Journal ofGeographical Information System, v. 5, n. 2, p. 161-174, 1991.
[10] Farber,M.;Tabachnikov,S.;Yuzvinsky,S.Topological robotics: Motion planning in projectivespaces. International Mathematical Research Notices, v. 34, p. 1853-1870, 2003.
[11] J.A.Guthrie, H.E.Stone and M.L.Wage, Maximal connected expansions of the reals, Proc. Amer. Math. Soc., 69 (1) (1978) 159-165.
[12] J.A.Guthrie, D.F.Reynolds and H.E.Stone, Connected expansions of topologies, Bull, Austral. Math. Soc., 9 (1973) 259-265.
[13] J.A.Guthrie and H.E.Stone, Spaces whose connected expansions preserve connectedsubsets, Fund. Math., 80 (1) (1973) 91-100.
[14] Jayanthi V, Janaki C (1963) On gr-closed set in topological spaces. Amer Math Monthly 70: 36-41.
[15] S.Kasahara, operation compact space .Math. Japon.,(1979),97-105.
[16] Kumar MV (2000) Between closed sets and g-closed sets. MemFacSci Kochi Univ (Math) 21: 1-19.
[17] II.ogata operations on topological spaces associated topology, Math.Japan.,36(1)(1991),175-184.
[18] Priyanka.K; Ananthi.V ;On y−τ−connectedness and disconnectedness in topological spaces,Bulletin of Mathematics and Statistical Research, Vol.6.Issue.4.2018(Oct-Dec).
[19] Sanjay Mishra; On α−τ−disconnectedness and α−τ−connectedness in topological spaces,Article inActaScientiarum Technology · July 2015
[20] G.T.Whyburn, Concerning the cut points of continua, Trans. Amer. Math. Soc., 30 (1928) 597-609.
[21] Zaitsev VI (1968) Some classes of topological spaces and their bicompact extensions. InDokladyAkademiiNauk 178: 778-779.

gγ-τ –Separate sets, gγ-τ- Disconnected sets, gγ-τ- Connected sets,–Open sets,gγ-Closed sets ,–Interior, –Closure.