On the Plane Motion of Incompressible Variable Viscosity fluids with Intermediate Peclet Number via Von-Mises Cooordinates

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2019 by IJMTT Journal
Volume-65 Issue-3
Year of Publication : 2019
Authors : Mushtaq Ahmed
  10.14445/22315373/IJMTT-V65I3P530

MLA

MLA Style:Mushtaq Ahmed "On the Plane Motion of Incompressible Variable Viscosity fluids with Intermediate Peclet Number via Von-Mises Cooordinates" International Journal of Mathematics Trends and Technology 65.3 (2019): 200-213.

APA Style: Mushtaq Ahmed (2019). On the Plane Motion of Incompressible Variable Viscosity fluids with Intermediate Peclet Number via Von-Mises Cooordinates. International Journal of Mathematics Trends and Technology, 65(3), 200-213.

Abstract
This paper is to present a class of new exact solutions of the system of partial differential equations governing the plane steady motion with intermediate Peclet number of incompressible fluid with variable viscosity in von-Mises coordinates.

Reference
[1] Chandna, O. P., Oku-Ukpong E. O.; Flows for chosen vorticity functions-Exact solutions of the Navier-Stokes Equations: International Journal of Applied Mathematics and Mathematical Sciences, 17(1) (1994) 155-164.
[2] Naeem, R. K.; Steady plane flows of an incompressible fluid of variable viscosity via Hodograph transformation method: Karachi University Journal of Sciences, 2003, 3(1), 73-89.
[3] Naeem, R. K.; On plane flows of an incompressible fluid of variable viscosity: Quarterly Science Vision, 2007, 12(1), 125-131.
[4] Naeem, R. K.; Mushtaq A.; A class of exact solutions to the fundamental equations for plane steady incompressible and variable viscosity fluid in the absence of body force: International Journal of Basic and Applied Sciences, 2015, 4(4), 429-465. www.sciencepubco.com/index.php/IJBAS , doi:10.14419/ijbas.v4i4.5064
[5] Mushtaq A., On Some Thermally Conducting Fluids: Ph. D Thesis, Department of Mathematics, University of Karachi, Pakistan, 2016.
[6] Mushtaq A.; Naeem R.K.; S. Anwer Ali; A class of new exact solutions of Navier-Stokes equations with body force for viscous incompressible fluid,: International Journal of Applied Mathematical Research, 2018, 7(1), 22-26. www.sciencepubco.com/index.php/IJAMR , doi:10.14419/ijamr.v7i1.8836
[7] Mushtaq Ahmed, Waseem Ahmed Khan : A Class of New Exact Solutions of the System of PDE for the plane motion of viscous incompressible fluids in the presence of body force,: International Journal of Applied Mathematical Research, 2018, 7 (2) , 42-48. www.sciencepubco.com/index.php/IJAMR , doi:10.14419 /ijamr.v7i2.9694
[8] Mushtaq Ahmed, Waseem Ahmed Khan , S. M. Shad Ahsen : A Class of Exact Solutions of Equations for Plane Steady Motion of Incompressible Fluids of Variable viscosity in presence of Body Force,: International Journal of Applied Mathematical Research, 2018, 7 (3) , 77-81. www.sciencepubco.com/index.php/IJAMR, doi:10.14419/ijamr.v7i2.12326
[9] Mushtaq Ahmed, (2018), A Class of New Exact Solution of equations for Motion of Variable Viscosity Fluid In presence of Body Force with Moderate Peclet number , International Journal of Fluid Mexhanics and Thermal Sciences, 4 (4) 429- www.sciencepublishingdroup.com/j/ijfmts doi: 10.11648/j.ijfmts.20180401.12
[10] D.L.R. Oliver & K.J. De Witt, High Peclet number heat transfer from a droplet suspended in an electric field: Interior problem, Int. J. Heat Mass Transfer, vol. 36: 3153-3155, 1993.
[11] B. Abramzon and C. Elata, Numerical analysis of unsteady conjugate heat transfer between a single spherical particle and surrounding flow at intermediate Reynolds and Peclet numbers, 2nd Int. Conf. on numerical methods in Thermal problems, Venice, pp. 1145-1153,1981.
[12] Z.G. Fenz, E.E. Michaelides, Unsteady mass transport from a sphere immersed in a porous medium at finite Peclet numbers, Int. J. Heat Mass Transfer 42: 3529-3531, 1999.
[13] Fayerweather Carl , Heat Transfer From a Droplet at Moderate Peclet Numbers with heat Generation. PhD. Thesis, U of Toledo, May 2007.
[14] Martin, M. H.; The flow of a viscous fluid I: Archive for Rational Mechanics and Analysis, 1971, 41(4), 266-286.
[15] Daniel Zwillinger; Handbook of differential equations; Academic Press, Inc. (1989)

Keywords
Variable viscosity fluids, Navier-Stokes equations with body force, Exact solutions in the presence of body force, Martin’s system, von-Mises coordinates, Intermediate Peclet number