Volume 66 | Issue 2 | Year 2020 | Article Id. IJMTT-V66I2P502 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I2P502
Yuliza Saputri, Sri Gemawati, Kartini, "Relationship of The First Type Stirling Matrix With Tetranacci Matrix," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 2, pp. 9-14, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I2P502
[1] M. Bona, A Walk Through Combinatorics, World Scientific Publishing, Singapore, (2006).
[2] G. S. Cheon and J. S. Kim, Stirling matrix via Pascal matrix,Linear Algebra and Its Applications, 329 (2001), 49–59.
[3] G. S. Cheon and J. S. Kim, Factorial Stirling matrix and related combinatorial sequences, Linear Algebra and Its Applications, 329 (2001), 49
[4] L. Comtet, Advanced Combinatorics, Reidel Publishing Company, Holland, (1974).
[5] M. Feinberg, Fibonacci-tribonacci, Fibonacci Quartely, 1 (1963), 70–74.
[6] K. Kuhapatanakul, The generalized tribonacci p-numbers dan applications, East-West Journal of Mathematical, 14 (2012), 144-153.
[7] G. Y. Lee, J. S. Kim and S. H. Cho, Some combinatorial identities via Fibonacci numbers, Discrete Applied Mathematics, 130 (2003), 527–534.
[8] P. Maltais and T. A. Gulliver, Pascal matrices dan Stirling Numbers, Applied Mathematical, 2 (1997), 7–11.
[9] Mirfaturiqa, M. D. H. Gamal, and S. Gemawati, Tetranacci matrix via Pascal’s matrix, Bulletin of Mathematics, 1 (2017), 1–7.
[10] F. Rasmi, M.D.H Gamal and S.Gemawati, Relation between Stirling’s number of the second kind and tribonacci matrix, Bulletin of Mathematics, 1 (2018), 33-39.
[11] N.Sabeth, S.Gemawati, and H. Saleh, A factorization of the tribonacci matrix and the Pascal matrix, Applied Mathematical Sciences, 11 (2017), 489-497.
[12] M. N. Saveri and J. K. Patel, Some properties of generalizet tetranacci sequence modulo m, International Journal of Computer and Mathematical Sciences, 4 (2005), 58-64.