Volume 66 | Issue 2 | Year 2020 | Article Id. IJMTT-V66I2P507 | DOI : https://doi.org/10.14445/22315373/IJMTT-V66I2P507
Ms. Sofije Hoxha, Fejzi Kolaneci, "The Existence of Stationary Solution for Nonlinear Random Reaction-Diffusion Equation in Banach Spaces," International Journal of Mathematics Trends and Technology (IJMTT), vol. 66, no. 2, pp. 58-63, 2020. Crossref, https://doi.org/10.14445/22315373/IJMTT-V66I2P507
[1] L. Arnold, W.Kliemann.Qualitative Theory of Stochastic Systems, in: Probability Anallysis and Related Topics, A.T.Bharucha-Reid ed., vol. III, Academics Pres, New York, 1983, 1-77.
[2] S.K Chung T.A. Austin Modeling Saturated-Unsaturated Water Flow in Soil. J. Irrig. Drain. Engin. 113 (2), 1987, 233-250.
[3] J.R Cordova, R. L. Bras. Physically Based Probabilistic Models of Infiltration, Soil Moisiture and Actual Evapotranspiration. Water Resources Research 17 (1), 1981, 93-106.
[4] G. DaPrato, J. Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge, 1992.
[5] F. Flandoli, D. Gatarek. Martingale and Stationary Solutions for Stochastic Naiver- Stokes Equations. Probab. Theory Relat. Fields, 102, 1995, 367-391.
[6] F. Flandoli, F. Kolaneci. Invariant Measures for Random Differential Equations in Infinite Dimensions. Preprints di Matematica, n.26, 1994, Scuola Normale Superiore, Pisa.
[7] R.A. Freeze. A Stochastic Conceptual Analysis of One-Dimensional Water Flow in Non-uniform Homogeneous Media. Water Resources Research, 1975, 725-741.
[8] D. Gatarek. A. Note on Nonlinear Stochastic Equations in Hilbert Spaces. Stad. and Prob. Letters 17, 1993, 387-394.
[9] N. Ikeda, S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North-Holland, Kodansha, 1981.
[10] F. Kolaneci. The Studay of a Stochastic Model of the Water Flow in Soil. Bull. Shk. Nat. 4 (1988), Tirana, 35-43.
[11] N.V. Krylov, B.L. Rozowski. Stochastic Evolution Equations. J.Sov. Math. 16 (1981), 1233-1277.
[12] Ch.Kuttler, Reaction-Diffusion Equations with Applications, 2011 (personal communication).
[13] J.L. Lions. Quelques Methodes de Resolution des Problemes aux Limites non Lineares. Dunod, Paris, 1969.
[14] M. Metivier. Stochastic Partial Differential Equations in Infinite Dimensional Spaces. Quaderni Scuola Normale Superiore, Pisa, 1988.
[15] Y. Miyahara. Invariant Measures for Ultimately Bounded Stochastic Processes. Nagoya Math. J., 49, 1973, 149-153.
[16] J.Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Springer, 2003.
[17] E. Pardoux. Equations aux Derivée Partilles Stochastiques Nonlineaires Monotones, These, Universite Paris XI, 1975.
[18] B. Sagar, C. Preller. Stochastic Model of Water Table under Drainage. J. Irrig. Drain. Engin. 106 (3), 1980, 189-202.
[19] P. Stengel. Utilisation de l’ Analyse des Systemes de Porosite pour la Caracterisation de l’Etat Physique du Sol in Situ. Annal. Agronom. 1, 1979, 27-49.
[20] J. Viot. Solutions Faibles d’Equations aux Derivees Partielles Stochastiques non Lineaires. These de Doctorat, Paris VI, 1976.