Volume 21 | Number 1 | Year 2015 | Article Id. IJMTT-V21P505 | DOI : https://doi.org/10.14445/22315373/IJMTT-V21P505
Non-Differentiable Fractional Programming Under Generalized d,Ρ,n,Θ - Type 1 Univex Function
Non-differentiable fractional duality is given and its weak duality and strong duality results
are established under generalized
d, , ,
type-1 univex function.
Non differentiable fractional duality, generalized university,
d, , ,
type – 1 univex
function.
1. Bectar, C.R., Chandra, S. and Abha (2001) : On mixed symmetric duality in Mathematical
programming, J. Math. Anal. Appl. 259, 346-356.
2. Yu, Z. (1996) : Mixed type duality in multiobjective Programming Problems, J. Math. Anal.
Appl. 198, 621-635.
3. Zhou, H. and Wang, Y. (2003) : Optimality and mixed duality for nonsmooth multiobjective
fractional Programming, PUMA; 14(3), 263-274.
4. Mishra, S. K. and Rautela, J.S. (2009) : On nonlinear multiobjective fractional Programming
involving semilocally type-1 univex function, Optim. Lett. 3, 171-185.
5. Hanson, M. A. and Mond, B. (1987) : Necessary and sufficient optimality condition in constraint
optimization, Math. Program. 37 (1), 51-58.
6. Rudra, N.G., Hanson, M. A. and Sing, C. (1995) : Optimality and duality with generality
convexity, J. Optim, Theory Appl., 86(2); 491-500.
7. Bectar, C. R. Sunija, S. K. and Gupta, S (1992) : Univex-functions and univex nonlinear
programming in : “Proceeding of the Administrative Science Association of Canada” 115-124.
8. Mishra, S. K., Wang, S. Y. and Lai, K. K. (2006) : Mond-Weir type mixed symmetric first and
second order duality in nondifferentiable mathematical Programming, J. Nonlinear convex Anal.,
7(3), 189-198.
9. Nayak C., Mohapatra, R. N. (2009) :
d, , ,
invexity in multiobjective optimization,
Nonlinear Anal, 70, 2288-2296.
Gayatri Devi, Rashmita Mohanty, "
Non-Differentiable Fractional Programming Under Generalized d,Ρ,n,Θ - Type 1 Univex Function